Struct polars_core::prelude::CategoricalChunked
source · pub struct CategoricalChunked { /* private fields */ }Implementations§
source§impl CategoricalChunked
impl CategoricalChunked
sourcepub fn sort_with(&self, options: SortOptions) -> CategoricalChunked
pub fn sort_with(&self, options: SortOptions) -> CategoricalChunked
Examples found in repository?
More examples
sourcepub fn sort(&self, reverse: bool) -> CategoricalChunked
pub fn sort(&self, reverse: bool) -> CategoricalChunked
Returned a sorted ChunkedArray.
sourcepub fn argsort(&self, options: SortOptions) -> IdxCa
pub fn argsort(&self, options: SortOptions) -> IdxCa
Retrieve the indexes needed to sort this array.
source§impl CategoricalChunked
impl CategoricalChunked
sourcepub fn append(&mut self, other: &Self) -> PolarsResult<()>
pub fn append(&mut self, other: &Self) -> PolarsResult<()>
source§impl CategoricalChunked
impl CategoricalChunked
sourcepub fn full_null(name: &str, length: usize) -> CategoricalChunked
pub fn full_null(name: &str, length: usize) -> CategoricalChunked
Examples found in repository?
src/series/implementations/categorical.rs (line 360)
359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
fn _sum_as_series(&self) -> Series {
CategoricalChunked::full_null(self.0.logical().name(), 1).into_series()
}
fn max_as_series(&self) -> Series {
CategoricalChunked::full_null(self.0.logical().name(), 1).into_series()
}
fn min_as_series(&self) -> Series {
CategoricalChunked::full_null(self.0.logical().name(), 1).into_series()
}
fn median_as_series(&self) -> Series {
CategoricalChunked::full_null(self.0.logical().name(), 1).into_series()
}
fn var_as_series(&self, _ddof: u8) -> Series {
CategoricalChunked::full_null(self.0.logical().name(), 1).into_series()
}
fn std_as_series(&self, _ddof: u8) -> Series {
CategoricalChunked::full_null(self.0.logical().name(), 1).into_series()
}
fn quantile_as_series(
&self,
_quantile: f64,
_interpol: QuantileInterpolOptions,
) -> PolarsResult<Series> {
Ok(CategoricalChunked::full_null(self.0.logical().name(), 1).into_series())
}
fn fmt_list(&self) -> String {
FmtList::fmt_list(&self.0)
}
fn clone_inner(&self) -> Arc<dyn SeriesTrait> {
Arc::new(SeriesWrap(Clone::clone(&self.0)))
}
#[cfg(feature = "is_in")]
fn is_in(&self, other: &Series) -> PolarsResult<BooleanChunked> {
_check_categorical_src(self.dtype(), other.dtype())?;
self.0.logical().is_in(&other.to_physical_repr())
}
#[cfg(feature = "repeat_by")]
fn repeat_by(&self, by: &IdxCa) -> ListChunked {
let out = self.0.logical().repeat_by(by);
let casted = out
.cast(&DataType::List(Box::new(self.dtype().clone())))
.unwrap();
casted.list().unwrap().clone()
}
#[cfg(feature = "is_first")]
fn is_first(&self) -> PolarsResult<BooleanChunked> {
self.0.logical().is_first()
}
#[cfg(feature = "mode")]
fn mode(&self) -> PolarsResult<Series> {
Ok(CategoricalChunked::full_null(self.0.logical().name(), 1).into_series())
}More examples
src/chunked_array/cast.rs (line 65)
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
fn cast_impl(&self, data_type: &DataType, checked: bool) -> PolarsResult<Series> {
match data_type {
#[cfg(feature = "dtype-categorical")]
DataType::Categorical(_) => {
Ok(CategoricalChunked::full_null(self.name(), self.len()).into_series())
}
#[cfg(feature = "dtype-struct")]
DataType::Struct(fields) => {
// cast to first field dtype
let fld = &fields[0];
let dtype = &fld.dtype;
let name = &fld.name;
let s = cast_impl_inner(name, &self.chunks, dtype, true)?;
Ok(StructChunked::new_unchecked(self.name(), &[s]).into_series())
}
_ => cast_impl_inner(self.name(), &self.chunks, data_type, checked).map(|mut s| {
// maintain sorted if data types remain signed
// this may still fail with overflow?
if ((self.dtype().is_signed() && data_type.is_signed())
|| (self.dtype().is_unsigned() && data_type.is_unsigned()))
&& (s.null_count() == self.null_count())
{
let is_sorted = self.is_sorted2();
s.set_sorted(is_sorted)
}
s
}),
}
}src/series/ops/null.rs (line 11)
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
pub fn full_null(name: &str, size: usize, dtype: &DataType) -> Self {
// match the logical types and create them
match dtype {
DataType::List(inner_dtype) => {
ListChunked::full_null_with_dtype(name, size, inner_dtype).into_series()
}
#[cfg(feature = "dtype-categorical")]
DataType::Categorical(_) => CategoricalChunked::full_null(name, size).into_series(),
#[cfg(feature = "dtype-date")]
DataType::Date => Int32Chunked::full_null(name, size)
.into_date()
.into_series(),
#[cfg(feature = "dtype-datetime")]
DataType::Datetime(tu, tz) => Int64Chunked::full_null(name, size)
.into_datetime(*tu, tz.clone())
.into_series(),
#[cfg(feature = "dtype-duration")]
DataType::Duration(tu) => Int64Chunked::full_null(name, size)
.into_duration(*tu)
.into_series(),
#[cfg(feature = "dtype-time")]
DataType::Time => Int64Chunked::full_null(name, size)
.into_time()
.into_series(),
#[cfg(feature = "dtype-struct")]
DataType::Struct(fields) => {
let fields = fields
.iter()
.map(|fld| Series::full_null(fld.name(), size, fld.data_type()))
.collect::<Vec<_>>();
StructChunked::new(name, &fields).unwrap().into_series()
}
DataType::Null => ChunkedArray::new_null("", size).into_series(),
_ => {
macro_rules! primitive {
($type:ty) => {{
ChunkedArray::<$type>::full_null(name, size).into_series()
}};
}
macro_rules! bool {
() => {{
ChunkedArray::<BooleanType>::full_null(name, size).into_series()
}};
}
macro_rules! utf8 {
() => {{
ChunkedArray::<Utf8Type>::full_null(name, size).into_series()
}};
}
#[cfg(feature = "dtype-binary")]
macro_rules! binary {
() => {{
ChunkedArray::<BinaryType>::full_null(name, size).into_series()
}};
}
match_dtype_to_logical_apply_macro!(dtype, primitive, utf8, binary, bool)
}
}
}source§impl CategoricalChunked
impl CategoricalChunked
sourcepub fn unique(&self) -> PolarsResult<Self>
pub fn unique(&self) -> PolarsResult<Self>
sourcepub fn n_unique(&self) -> PolarsResult<usize>
pub fn n_unique(&self) -> PolarsResult<usize>
pub fn value_counts(&self) -> PolarsResult<DataFrame>
source§impl CategoricalChunked
impl CategoricalChunked
pub fn is_empty(&self) -> bool
sourcepub fn len(&self) -> usize
pub fn len(&self) -> usize
Examples found in repository?
More examples
src/chunked_array/logical/categorical/mod.rs (line 30)
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
pub fn is_empty(&self) -> bool {
self.len() == 0
}
pub fn len(&self) -> usize {
self.logical.len()
}
pub fn name(&self) -> &str {
self.logical.name()
}
/// Get a reference to the logical array (the categories).
pub fn logical(&self) -> &UInt32Chunked {
&self.logical
}
/// Get a reference to the logical array (the categories).
pub(crate) fn logical_mut(&mut self) -> &mut UInt32Chunked {
&mut self.logical
}
/// Build a categorical from an original RevMap. That means that the number of categories in the `RevMapping == self.unique().len()`.
pub(crate) fn from_chunks_original(
name: &str,
chunks: Vec<ArrayRef>,
rev_map: RevMapping,
) -> Self {
let ca = UInt32Chunked::from_chunks(name, chunks);
let mut logical = Logical::<UInt32Type, _>::new_logical::<CategoricalType>(ca);
logical.2 = Some(DataType::Categorical(Some(Arc::new(rev_map))));
let bit_settings = 1u8;
Self {
logical,
bit_settings,
}
}
pub fn set_lexical_sorted(&mut self, toggle: bool) {
if toggle {
self.bit_settings |= 1u8 << 1;
} else {
self.bit_settings &= !(1u8 << 1);
}
}
pub(crate) fn use_lexical_sort(&self) -> bool {
self.bit_settings & 1 << 1 != 0
}
/// Create a [`CategoricalChunked`] from an array of `idx` and an existing [`RevMapping`]: `rev_map`.
///
/// # Safety
/// Invariant in `v < rev_map.len() for v in idx` must be hold.
pub unsafe fn from_cats_and_rev_map_unchecked(
idx: UInt32Chunked,
rev_map: Arc<RevMapping>,
) -> Self {
let mut logical = Logical::<UInt32Type, _>::new_logical::<CategoricalType>(idx);
logical.2 = Some(DataType::Categorical(Some(rev_map)));
Self {
logical,
bit_settings: Default::default(),
}
}
/// # Safety
/// The existing index values must be in bounds of the new [`RevMapping`].
pub(crate) unsafe fn set_rev_map(&mut self, rev_map: Arc<RevMapping>, keep_fast_unique: bool) {
self.logical.2 = Some(DataType::Categorical(Some(rev_map)));
if !keep_fast_unique {
self.set_fast_unique(false)
}
}
pub(crate) fn can_fast_unique(&self) -> bool {
self.bit_settings & 1 << 0 != 0 && self.logical.chunks.len() == 1
}
pub(crate) fn set_fast_unique(&mut self, can: bool) {
if can {
self.bit_settings |= 1u8 << 0;
} else {
self.bit_settings &= !(1u8 << 0);
}
}
/// Get a reference to the mapping of categorical types to the string values.
pub fn get_rev_map(&self) -> &Arc<RevMapping> {
if let DataType::Categorical(Some(rev_map)) = &self.logical.2.as_ref().unwrap() {
rev_map
} else {
panic!("implementation error")
}
}
/// Create an `[Iterator]` that iterates over the `&str` values of the `[CategoricalChunked]`.
pub fn iter_str(&self) -> CatIter<'_> {
let iter = self.logical().into_iter();
CatIter {
rev: self.get_rev_map(),
iter,
}
}
}
impl LogicalType for CategoricalChunked {
fn dtype(&self) -> &DataType {
self.logical.2.as_ref().unwrap()
}
fn get_any_value(&self, i: usize) -> PolarsResult<AnyValue<'_>> {
if i < self.len() {
Ok(unsafe { self.get_any_value_unchecked(i) })
} else {
Err(PolarsError::ComputeError("Index is out of bounds.".into()))
}
}
unsafe fn get_any_value_unchecked(&self, i: usize) -> AnyValue<'_> {
match self.logical.0.get_unchecked(i) {
Some(i) => AnyValue::Categorical(i, self.get_rev_map()),
None => AnyValue::Null,
}
}
fn cast(&self, dtype: &DataType) -> PolarsResult<Series> {
match dtype {
DataType::Utf8 => {
let mapping = &**self.get_rev_map();
let mut builder =
Utf8ChunkedBuilder::new(self.logical.name(), self.len(), self.len() * 5);
let f = |idx: u32| mapping.get(idx);
if !self.logical.has_validity() {
self.logical
.into_no_null_iter()
.for_each(|idx| builder.append_value(f(idx)));
} else {
self.logical.into_iter().for_each(|opt_idx| {
builder.append_option(opt_idx.map(f));
});
}
let ca = builder.finish();
Ok(ca.into_series())
}
DataType::UInt32 => {
let ca =
UInt32Chunked::from_chunks(self.logical.name(), self.logical.chunks.clone());
Ok(ca.into_series())
}
#[cfg(feature = "dtype-categorical")]
DataType::Categorical(_) => Ok(self.clone().into_series()),
_ => self.logical.cast(dtype),
}
}src/chunked_array/ops/sort/categorical.rs (line 109)
101 102 103 104 105 106 107 108 109 110 111 112 113 114
pub fn argsort(&self, options: SortOptions) -> IdxCa {
if self.use_lexical_sort() {
let iters = [self.iter_str()];
argsort::argsort(
self.name(),
iters,
options,
self.logical().null_count(),
self.len(),
)
} else {
self.logical().argsort(options)
}
}src/series/comparison.rs (line 77)
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
fn compare_cat_to_str_value<Compare>(
cat: &Series,
value: &str,
name: &str,
compare: Compare,
fill_value: bool,
) -> PolarsResult<BooleanChunked>
where
Compare: Fn(&Series, u32) -> PolarsResult<BooleanChunked>,
{
let cat = cat.categorical().expect("should be categorical");
let cat_map = cat.get_rev_map();
match cat_map.find(value) {
None => Ok(BooleanChunked::full(name, fill_value, cat.len())),
Some(cat_idx) => {
let cat = cat.cast(&DataType::UInt32).unwrap();
compare(&cat, cat_idx)
}
}
}src/chunked_array/logical/categorical/ops/append.rs (line 7)
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
pub fn append(&mut self, other: &Self) -> PolarsResult<()> {
if self.logical.null_count() == self.len() && other.logical.null_count() == other.len() {
let len = self.len();
self.logical_mut().length += other.len() as IdxSize;
new_chunks(&mut self.logical.chunks, &other.logical().chunks, len);
return Ok(());
}
let is_local_different_source =
match (self.get_rev_map().as_ref(), other.get_rev_map().as_ref()) {
(RevMapping::Local(arr_l), RevMapping::Local(arr_r)) => !std::ptr::eq(arr_l, arr_r),
_ => false,
};
if is_local_different_source {
return Err(PolarsError::ComputeError("Cannot concat Categoricals coming from a different source. Consider setting a global StringCache.".into()));
} else {
let len = self.len();
let new_rev_map = self.merge_categorical_map(other)?;
unsafe { self.set_rev_map(new_rev_map, false) };
self.logical_mut().length += other.len() as IdxSize;
new_chunks(&mut self.logical.chunks, &other.logical().chunks, len);
}
self.logical.set_sorted2(IsSorted::Not);
Ok(())
}sourcepub fn name(&self) -> &str
pub fn name(&self) -> &str
Examples found in repository?
src/chunked_array/ops/sort/categorical.rs (line 105)
101 102 103 104 105 106 107 108 109 110 111 112 113 114
pub fn argsort(&self, options: SortOptions) -> IdxCa {
if self.use_lexical_sort() {
let iters = [self.iter_str()];
argsort::argsort(
self.name(),
iters,
options,
self.logical().null_count(),
self.len(),
)
} else {
self.logical().argsort(options)
}
}sourcepub fn logical(&self) -> &UInt32Chunked
pub fn logical(&self) -> &UInt32Chunked
Get a reference to the logical array (the categories).
Examples found in repository?
src/chunked_array/logical/categorical/mod.rs (line 25)
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
pub(crate) fn field(&self) -> Field {
let name = self.logical().name();
Field::new(name, self.dtype().clone())
}
pub fn is_empty(&self) -> bool {
self.len() == 0
}
pub fn len(&self) -> usize {
self.logical.len()
}
pub fn name(&self) -> &str {
self.logical.name()
}
/// Get a reference to the logical array (the categories).
pub fn logical(&self) -> &UInt32Chunked {
&self.logical
}
/// Get a reference to the logical array (the categories).
pub(crate) fn logical_mut(&mut self) -> &mut UInt32Chunked {
&mut self.logical
}
/// Build a categorical from an original RevMap. That means that the number of categories in the `RevMapping == self.unique().len()`.
pub(crate) fn from_chunks_original(
name: &str,
chunks: Vec<ArrayRef>,
rev_map: RevMapping,
) -> Self {
let ca = UInt32Chunked::from_chunks(name, chunks);
let mut logical = Logical::<UInt32Type, _>::new_logical::<CategoricalType>(ca);
logical.2 = Some(DataType::Categorical(Some(Arc::new(rev_map))));
let bit_settings = 1u8;
Self {
logical,
bit_settings,
}
}
pub fn set_lexical_sorted(&mut self, toggle: bool) {
if toggle {
self.bit_settings |= 1u8 << 1;
} else {
self.bit_settings &= !(1u8 << 1);
}
}
pub(crate) fn use_lexical_sort(&self) -> bool {
self.bit_settings & 1 << 1 != 0
}
/// Create a [`CategoricalChunked`] from an array of `idx` and an existing [`RevMapping`]: `rev_map`.
///
/// # Safety
/// Invariant in `v < rev_map.len() for v in idx` must be hold.
pub unsafe fn from_cats_and_rev_map_unchecked(
idx: UInt32Chunked,
rev_map: Arc<RevMapping>,
) -> Self {
let mut logical = Logical::<UInt32Type, _>::new_logical::<CategoricalType>(idx);
logical.2 = Some(DataType::Categorical(Some(rev_map)));
Self {
logical,
bit_settings: Default::default(),
}
}
/// # Safety
/// The existing index values must be in bounds of the new [`RevMapping`].
pub(crate) unsafe fn set_rev_map(&mut self, rev_map: Arc<RevMapping>, keep_fast_unique: bool) {
self.logical.2 = Some(DataType::Categorical(Some(rev_map)));
if !keep_fast_unique {
self.set_fast_unique(false)
}
}
pub(crate) fn can_fast_unique(&self) -> bool {
self.bit_settings & 1 << 0 != 0 && self.logical.chunks.len() == 1
}
pub(crate) fn set_fast_unique(&mut self, can: bool) {
if can {
self.bit_settings |= 1u8 << 0;
} else {
self.bit_settings &= !(1u8 << 0);
}
}
/// Get a reference to the mapping of categorical types to the string values.
pub fn get_rev_map(&self) -> &Arc<RevMapping> {
if let DataType::Categorical(Some(rev_map)) = &self.logical.2.as_ref().unwrap() {
rev_map
} else {
panic!("implementation error")
}
}
/// Create an `[Iterator]` that iterates over the `&str` values of the `[CategoricalChunked]`.
pub fn iter_str(&self) -> CatIter<'_> {
let iter = self.logical().into_iter();
CatIter {
rev: self.get_rev_map(),
iter,
}
}More examples
src/series/implementations/categorical.rs (line 41)
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423
fn with_state<F>(&self, keep_fast_unique: bool, apply: F) -> CategoricalChunked
where
F: Fn(&UInt32Chunked) -> UInt32Chunked,
{
let cats = apply(self.0.logical());
self.finish_with_state(keep_fast_unique, cats)
}
fn try_with_state<'a, F>(
&'a self,
keep_fast_unique: bool,
apply: F,
) -> PolarsResult<CategoricalChunked>
where
F: for<'b> Fn(&'a UInt32Chunked) -> PolarsResult<UInt32Chunked>,
{
let cats = apply(self.0.logical())?;
Ok(self.finish_with_state(keep_fast_unique, cats))
}
}
impl private::PrivateSeries for SeriesWrap<CategoricalChunked> {
fn compute_len(&mut self) {
self.0.logical_mut().compute_len()
}
fn _field(&self) -> Cow<Field> {
Cow::Owned(self.0.field())
}
fn _dtype(&self) -> &DataType {
self.0.dtype()
}
fn explode_by_offsets(&self, offsets: &[i64]) -> Series {
// TODO! explode by offset should return concrete type
self.with_state(true, |cats| {
cats.explode_by_offsets(offsets).u32().unwrap().clone()
})
.into_series()
}
fn _set_sorted(&mut self, is_sorted: IsSorted) {
self.0.logical_mut().set_sorted2(is_sorted)
}
unsafe fn equal_element(&self, idx_self: usize, idx_other: usize, other: &Series) -> bool {
self.0.logical().equal_element(idx_self, idx_other, other)
}
#[cfg(feature = "zip_with")]
fn zip_with_same_type(&self, mask: &BooleanChunked, other: &Series) -> PolarsResult<Series> {
self.0
.zip_with(mask, other.categorical()?)
.map(|ca| ca.into_series())
}
fn into_partial_ord_inner<'a>(&'a self) -> Box<dyn PartialOrdInner + 'a> {
(&self.0).into_partial_ord_inner()
}
fn vec_hash(&self, random_state: RandomState, buf: &mut Vec<u64>) -> PolarsResult<()> {
self.0.logical().vec_hash(random_state, buf);
Ok(())
}
fn vec_hash_combine(&self, build_hasher: RandomState, hashes: &mut [u64]) -> PolarsResult<()> {
self.0.logical().vec_hash_combine(build_hasher, hashes);
Ok(())
}
unsafe fn agg_list(&self, groups: &GroupsProxy) -> Series {
// we cannot cast and dispatch as the inner type of the list would be incorrect
self.0
.logical()
.agg_list(groups)
.cast(&DataType::List(Box::new(self.dtype().clone())))
.unwrap()
}
fn zip_outer_join_column(
&self,
right_column: &Series,
opt_join_tuples: &[(Option<IdxSize>, Option<IdxSize>)],
) -> Series {
let new_rev_map = self
.0
.merge_categorical_map(right_column.categorical().unwrap())
.unwrap();
let left = self.0.logical();
let right = right_column
.categorical()
.unwrap()
.logical()
.clone()
.into_series();
let cats = left.zip_outer_join_column(&right, opt_join_tuples);
let cats = cats.u32().unwrap().clone();
unsafe {
CategoricalChunked::from_cats_and_rev_map_unchecked(cats, new_rev_map).into_series()
}
}
fn group_tuples(&self, multithreaded: bool, sorted: bool) -> PolarsResult<GroupsProxy> {
self.0.logical().group_tuples(multithreaded, sorted)
}
#[cfg(feature = "sort_multiple")]
fn argsort_multiple(&self, by: &[Series], reverse: &[bool]) -> PolarsResult<IdxCa> {
self.0.argsort_multiple(by, reverse)
}
}
impl SeriesTrait for SeriesWrap<CategoricalChunked> {
fn is_sorted(&self) -> IsSorted {
if self.0.logical().is_sorted() {
IsSorted::Ascending
} else if self.0.logical().is_sorted_reverse() {
IsSorted::Descending
} else {
IsSorted::Not
}
}
fn rename(&mut self, name: &str) {
self.0.logical_mut().rename(name);
}
fn chunk_lengths(&self) -> ChunkIdIter {
self.0.logical().chunk_id()
}
fn name(&self) -> &str {
self.0.logical().name()
}
fn chunks(&self) -> &Vec<ArrayRef> {
self.0.logical().chunks()
}
fn shrink_to_fit(&mut self) {
self.0.logical_mut().shrink_to_fit()
}
fn slice(&self, offset: i64, length: usize) -> Series {
self.with_state(false, |cats| cats.slice(offset, length))
.into_series()
}
fn append(&mut self, other: &Series) -> PolarsResult<()> {
if self.0.dtype() == other.dtype() {
self.0.append(other.categorical().unwrap())
} else {
Err(PolarsError::SchemaMisMatch(
"cannot append Series; data types don't match".into(),
))
}
}
fn extend(&mut self, other: &Series) -> PolarsResult<()> {
if self.0.dtype() == other.dtype() {
let other = other.categorical()?;
self.0.logical_mut().extend(other.logical());
let new_rev_map = self.0.merge_categorical_map(other)?;
// safety:
// rev_maps are merged
unsafe { self.0.set_rev_map(new_rev_map, false) };
Ok(())
} else {
Err(PolarsError::SchemaMisMatch(
"cannot extend Series; data types don't match".into(),
))
}
}
fn filter(&self, filter: &BooleanChunked) -> PolarsResult<Series> {
self.try_with_state(false, |cats| cats.filter(filter))
.map(|ca| ca.into_series())
}
#[cfg(feature = "chunked_ids")]
unsafe fn _take_chunked_unchecked(&self, by: &[ChunkId], sorted: IsSorted) -> Series {
let cats = self.0.logical().take_chunked_unchecked(by, sorted);
self.finish_with_state(false, cats).into_series()
}
#[cfg(feature = "chunked_ids")]
unsafe fn _take_opt_chunked_unchecked(&self, by: &[Option<ChunkId>]) -> Series {
let cats = self.0.logical().take_opt_chunked_unchecked(by);
self.finish_with_state(false, cats).into_series()
}
fn take(&self, indices: &IdxCa) -> PolarsResult<Series> {
let indices = if indices.chunks.len() > 1 {
Cow::Owned(indices.rechunk())
} else {
Cow::Borrowed(indices)
};
self.try_with_state(false, |cats| cats.take((&*indices).into()))
.map(|ca| ca.into_series())
}
fn take_iter(&self, iter: &mut dyn TakeIterator) -> PolarsResult<Series> {
let cats = self.0.logical().take(iter.into())?;
Ok(self.finish_with_state(false, cats).into_series())
}
fn take_every(&self, n: usize) -> Series {
self.with_state(true, |cats| cats.take_every(n))
.into_series()
}
unsafe fn take_iter_unchecked(&self, iter: &mut dyn TakeIterator) -> Series {
let cats = self.0.logical().take_unchecked(iter.into());
self.finish_with_state(false, cats).into_series()
}
unsafe fn take_unchecked(&self, idx: &IdxCa) -> PolarsResult<Series> {
let idx = if idx.chunks.len() > 1 {
Cow::Owned(idx.rechunk())
} else {
Cow::Borrowed(idx)
};
Ok(self
.with_state(false, |cats| cats.take_unchecked((&*idx).into()))
.into_series())
}
unsafe fn take_opt_iter_unchecked(&self, iter: &mut dyn TakeIteratorNulls) -> Series {
let cats = self.0.logical().take_unchecked(iter.into());
self.finish_with_state(false, cats).into_series()
}
#[cfg(feature = "take_opt_iter")]
fn take_opt_iter(&self, iter: &mut dyn TakeIteratorNulls) -> PolarsResult<Series> {
let cats = self.0.logical().take(iter.into())?;
Ok(self.finish_with_state(false, cats).into_series())
}
fn len(&self) -> usize {
self.0.len()
}
fn rechunk(&self) -> Series {
self.with_state(true, |ca| ca.rechunk()).into_series()
}
fn new_from_index(&self, index: usize, length: usize) -> Series {
self.with_state(true, |cats| cats.new_from_index(index, length))
.into_series()
}
fn cast(&self, data_type: &DataType) -> PolarsResult<Series> {
self.0.cast(data_type)
}
fn get(&self, index: usize) -> PolarsResult<AnyValue> {
self.0.get_any_value(index)
}
#[inline]
#[cfg(feature = "private")]
unsafe fn get_unchecked(&self, index: usize) -> AnyValue {
self.0.get_any_value_unchecked(index)
}
fn sort_with(&self, options: SortOptions) -> Series {
self.0.sort_with(options).into_series()
}
fn argsort(&self, options: SortOptions) -> IdxCa {
self.0.argsort(options)
}
fn null_count(&self) -> usize {
self.0.logical().null_count()
}
fn has_validity(&self) -> bool {
self.0.logical().has_validity()
}
fn unique(&self) -> PolarsResult<Series> {
self.0.unique().map(|ca| ca.into_series())
}
fn n_unique(&self) -> PolarsResult<usize> {
self.0.n_unique()
}
fn arg_unique(&self) -> PolarsResult<IdxCa> {
self.0.logical().arg_unique()
}
fn is_null(&self) -> BooleanChunked {
self.0.logical().is_null()
}
fn is_not_null(&self) -> BooleanChunked {
self.0.logical().is_not_null()
}
fn is_unique(&self) -> PolarsResult<BooleanChunked> {
self.0.logical().is_unique()
}
fn is_duplicated(&self) -> PolarsResult<BooleanChunked> {
self.0.logical().is_duplicated()
}
fn reverse(&self) -> Series {
self.with_state(true, |cats| cats.reverse()).into_series()
}
fn as_single_ptr(&mut self) -> PolarsResult<usize> {
self.0.logical_mut().as_single_ptr()
}
fn shift(&self, periods: i64) -> Series {
self.with_state(false, |ca| ca.shift(periods)).into_series()
}
fn fill_null(&self, strategy: FillNullStrategy) -> PolarsResult<Series> {
self.try_with_state(false, |cats| cats.fill_null(strategy))
.map(|ca| ca.into_series())
}
fn _sum_as_series(&self) -> Series {
CategoricalChunked::full_null(self.0.logical().name(), 1).into_series()
}
fn max_as_series(&self) -> Series {
CategoricalChunked::full_null(self.0.logical().name(), 1).into_series()
}
fn min_as_series(&self) -> Series {
CategoricalChunked::full_null(self.0.logical().name(), 1).into_series()
}
fn median_as_series(&self) -> Series {
CategoricalChunked::full_null(self.0.logical().name(), 1).into_series()
}
fn var_as_series(&self, _ddof: u8) -> Series {
CategoricalChunked::full_null(self.0.logical().name(), 1).into_series()
}
fn std_as_series(&self, _ddof: u8) -> Series {
CategoricalChunked::full_null(self.0.logical().name(), 1).into_series()
}
fn quantile_as_series(
&self,
_quantile: f64,
_interpol: QuantileInterpolOptions,
) -> PolarsResult<Series> {
Ok(CategoricalChunked::full_null(self.0.logical().name(), 1).into_series())
}
fn fmt_list(&self) -> String {
FmtList::fmt_list(&self.0)
}
fn clone_inner(&self) -> Arc<dyn SeriesTrait> {
Arc::new(SeriesWrap(Clone::clone(&self.0)))
}
#[cfg(feature = "is_in")]
fn is_in(&self, other: &Series) -> PolarsResult<BooleanChunked> {
_check_categorical_src(self.dtype(), other.dtype())?;
self.0.logical().is_in(&other.to_physical_repr())
}
#[cfg(feature = "repeat_by")]
fn repeat_by(&self, by: &IdxCa) -> ListChunked {
let out = self.0.logical().repeat_by(by);
let casted = out
.cast(&DataType::List(Box::new(self.dtype().clone())))
.unwrap();
casted.list().unwrap().clone()
}
#[cfg(feature = "is_first")]
fn is_first(&self) -> PolarsResult<BooleanChunked> {
self.0.logical().is_first()
}
#[cfg(feature = "mode")]
fn mode(&self) -> PolarsResult<Series> {
Ok(CategoricalChunked::full_null(self.0.logical().name(), 1).into_series())
}
}
impl private::PrivateSeriesNumeric for SeriesWrap<CategoricalChunked> {
fn bit_repr_is_large(&self) -> bool {
false
}
fn bit_repr_small(&self) -> UInt32Chunked {
self.0.logical().clone()
}src/chunked_array/logical/categorical/ops/take_random.rs (line 27)
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
pub(crate) fn new(ca: &'a CategoricalChunked) -> Self {
// should be rechunked upstream
assert_eq!(ca.logical.chunks.len(), 1, "implementation error");
if let RevMapping::Local(rev_map) = &**ca.get_rev_map() {
let cats = ca.logical().take_rand();
Self { rev_map, cats }
} else {
unreachable!()
}
}
}
impl PartialOrdInner for CategoricalTakeRandomLocal<'_> {
unsafe fn cmp_element_unchecked(&self, idx_a: usize, idx_b: usize) -> Ordering {
let a = self
.cats
.get_unchecked(idx_a)
.map(|cat| self.rev_map.value_unchecked(cat as usize));
let b = self
.cats
.get_unchecked(idx_b)
.map(|cat| self.rev_map.value_unchecked(cat as usize));
a.partial_cmp(&b).unwrap()
}
}
pub(crate) struct CategoricalTakeRandomGlobal<'a> {
rev_map_part_1: &'a PlHashMap<u32, u32>,
rev_map_part_2: &'a Utf8Array<i64>,
cats: TakeCats<'a>,
}
impl<'a> CategoricalTakeRandomGlobal<'a> {
pub(crate) fn new(ca: &'a CategoricalChunked) -> Self {
// should be rechunked upstream
assert_eq!(ca.logical.chunks.len(), 1, "implementation error");
if let RevMapping::Global(rev_map_part_1, rev_map_part_2, _) = &**ca.get_rev_map() {
let cats = ca.logical().take_rand();
Self {
rev_map_part_1,
rev_map_part_2,
cats,
}
} else {
unreachable!()
}
}src/chunked_array/logical/categorical/ops/zip.rs (line 13)
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
pub(crate) fn zip_with(
&self,
mask: &BooleanChunked,
other: &CategoricalChunked,
) -> PolarsResult<Self> {
let cats = match &**self.get_rev_map() {
RevMapping::Local(rev_map) => {
// the logic for merging the rev maps will concatenate utf8 arrays
// to make sure the indexes still make sense we need to offset the right hand side
self.logical()
.zip_with(mask, &(other.logical() + rev_map.len() as u32))?
}
_ => self.logical().zip_with(mask, other.logical())?,
};
let new_state = self.merge_categorical_map(other)?;
// Safety:
// we checked the rev_maps.
unsafe {
Ok(CategoricalChunked::from_cats_and_rev_map_unchecked(
cats, new_state,
))
}
}src/chunked_array/logical/categorical/ops/unique.rs (line 10)
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
pub fn unique(&self) -> PolarsResult<Self> {
let cat_map = self.get_rev_map();
if self.can_fast_unique() {
let ca = match &**cat_map {
RevMapping::Local(a) => {
UInt32Chunked::from_iter_values(self.logical().name(), 0..(a.len() as u32))
}
RevMapping::Global(map, _, _) => {
UInt32Chunked::from_iter_values(self.logical().name(), map.keys().copied())
}
};
// safety:
// we only removed some indexes so we are still in bounds
unsafe {
let mut out =
CategoricalChunked::from_cats_and_rev_map_unchecked(ca, cat_map.clone());
out.set_fast_unique(true);
Ok(out)
}
} else {
let ca = self.logical().unique()?;
// safety:
// we only removed some indexes so we are still in bounds
unsafe {
Ok(CategoricalChunked::from_cats_and_rev_map_unchecked(
ca,
cat_map.clone(),
))
}
}
}
pub fn n_unique(&self) -> PolarsResult<usize> {
if self.can_fast_unique() {
Ok(self.get_rev_map().len())
} else {
self.logical().n_unique()
}
}
pub fn value_counts(&self) -> PolarsResult<DataFrame> {
let groups = self.logical().group_tuples(true, false).unwrap();
let logical_values = unsafe {
self.logical()
.clone()
.into_series()
.agg_first(&groups)
.u32()
.unwrap()
.clone()
};
let mut values = self.clone();
*values.logical_mut() = logical_values;
let mut counts = groups.group_count();
counts.rename("counts");
let cols = vec![values.into_series(), counts.into_series()];
let df = DataFrame::new_no_checks(cols);
df.sort(["counts"], true)
}src/chunked_array/logical/categorical/from.rs (line 10)
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
fn from(ca: &CategoricalChunked) -> Self {
let keys = ca.logical().rechunk();
let keys = keys.downcast_iter().next().unwrap();
let map = &**ca.get_rev_map();
let dtype = ArrowDataType::Dictionary(
IntegerType::UInt32,
Box::new(ArrowDataType::LargeUtf8),
false,
);
match map {
RevMapping::Local(arr) => {
// Safety:
// the keys are in bounds
unsafe {
DictionaryArray::try_new_unchecked(dtype, keys.clone(), Box::new(arr.clone()))
.unwrap()
}
}
RevMapping::Global(reverse_map, values, _uuid) => {
let iter = keys
.into_iter()
.map(|opt_k| opt_k.map(|k| *reverse_map.get(k).unwrap()));
let keys = PrimitiveArray::from_trusted_len_iter(iter);
// Safety:
// the keys are in bounds
unsafe {
DictionaryArray::try_new_unchecked(dtype, keys, Box::new(values.clone()))
.unwrap()
}
}
}
}
}
impl From<&CategoricalChunked> for DictionaryArray<i64> {
fn from(ca: &CategoricalChunked) -> Self {
let keys = ca.logical().rechunk();
let keys = keys.downcast_iter().next().unwrap();
let map = &**ca.get_rev_map();
let dtype = ArrowDataType::Dictionary(
IntegerType::UInt32,
Box::new(ArrowDataType::LargeUtf8),
false,
);
match map {
// Safety:
// the keys are in bounds
RevMapping::Local(arr) => unsafe {
DictionaryArray::try_new_unchecked(
dtype,
cast(keys, &ArrowDataType::Int64)
.unwrap()
.as_any()
.downcast_ref::<PrimitiveArray<i64>>()
.unwrap()
.clone(),
Box::new(arr.clone()),
)
.unwrap()
},
RevMapping::Global(reverse_map, values, _uuid) => {
let iter = keys
.into_iter()
.map(|opt_k| opt_k.map(|k| *reverse_map.get(k).unwrap() as i64));
let keys = PrimitiveArray::from_trusted_len_iter(iter);
// Safety:
// the keys are in bounds
unsafe {
DictionaryArray::try_new_unchecked(dtype, keys, Box::new(values.clone()))
.unwrap()
}
}
}
}Additional examples can be found in:
sourcepub fn set_lexical_sorted(&mut self, toggle: bool)
pub fn set_lexical_sorted(&mut self, toggle: bool)
sourcepub unsafe fn from_cats_and_rev_map_unchecked(
idx: UInt32Chunked,
rev_map: Arc<RevMapping>
) -> Self
pub unsafe fn from_cats_and_rev_map_unchecked(
idx: UInt32Chunked,
rev_map: Arc<RevMapping>
) -> Self
Create a CategoricalChunked from an array of idx and an existing RevMapping: rev_map.
Safety
Invariant in v < rev_map.len() for v in idx must be hold.
Examples found in repository?
More examples
src/series/implementations/categorical.rs (line 28)
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
fn finish_with_state(&self, keep_fast_unique: bool, cats: UInt32Chunked) -> CategoricalChunked {
let mut out = unsafe {
CategoricalChunked::from_cats_and_rev_map_unchecked(cats, self.0.get_rev_map().clone())
};
if keep_fast_unique && self.0.can_fast_unique() {
out.set_fast_unique(true)
}
out.set_lexical_sorted(self.0.use_lexical_sort());
out
}
fn with_state<F>(&self, keep_fast_unique: bool, apply: F) -> CategoricalChunked
where
F: Fn(&UInt32Chunked) -> UInt32Chunked,
{
let cats = apply(self.0.logical());
self.finish_with_state(keep_fast_unique, cats)
}
fn try_with_state<'a, F>(
&'a self,
keep_fast_unique: bool,
apply: F,
) -> PolarsResult<CategoricalChunked>
where
F: for<'b> Fn(&'a UInt32Chunked) -> PolarsResult<UInt32Chunked>,
{
let cats = apply(self.0.logical())?;
Ok(self.finish_with_state(keep_fast_unique, cats))
}
}
impl private::PrivateSeries for SeriesWrap<CategoricalChunked> {
fn compute_len(&mut self) {
self.0.logical_mut().compute_len()
}
fn _field(&self) -> Cow<Field> {
Cow::Owned(self.0.field())
}
fn _dtype(&self) -> &DataType {
self.0.dtype()
}
fn explode_by_offsets(&self, offsets: &[i64]) -> Series {
// TODO! explode by offset should return concrete type
self.with_state(true, |cats| {
cats.explode_by_offsets(offsets).u32().unwrap().clone()
})
.into_series()
}
fn _set_sorted(&mut self, is_sorted: IsSorted) {
self.0.logical_mut().set_sorted2(is_sorted)
}
unsafe fn equal_element(&self, idx_self: usize, idx_other: usize, other: &Series) -> bool {
self.0.logical().equal_element(idx_self, idx_other, other)
}
#[cfg(feature = "zip_with")]
fn zip_with_same_type(&self, mask: &BooleanChunked, other: &Series) -> PolarsResult<Series> {
self.0
.zip_with(mask, other.categorical()?)
.map(|ca| ca.into_series())
}
fn into_partial_ord_inner<'a>(&'a self) -> Box<dyn PartialOrdInner + 'a> {
(&self.0).into_partial_ord_inner()
}
fn vec_hash(&self, random_state: RandomState, buf: &mut Vec<u64>) -> PolarsResult<()> {
self.0.logical().vec_hash(random_state, buf);
Ok(())
}
fn vec_hash_combine(&self, build_hasher: RandomState, hashes: &mut [u64]) -> PolarsResult<()> {
self.0.logical().vec_hash_combine(build_hasher, hashes);
Ok(())
}
unsafe fn agg_list(&self, groups: &GroupsProxy) -> Series {
// we cannot cast and dispatch as the inner type of the list would be incorrect
self.0
.logical()
.agg_list(groups)
.cast(&DataType::List(Box::new(self.dtype().clone())))
.unwrap()
}
fn zip_outer_join_column(
&self,
right_column: &Series,
opt_join_tuples: &[(Option<IdxSize>, Option<IdxSize>)],
) -> Series {
let new_rev_map = self
.0
.merge_categorical_map(right_column.categorical().unwrap())
.unwrap();
let left = self.0.logical();
let right = right_column
.categorical()
.unwrap()
.logical()
.clone()
.into_series();
let cats = left.zip_outer_join_column(&right, opt_join_tuples);
let cats = cats.u32().unwrap().clone();
unsafe {
CategoricalChunked::from_cats_and_rev_map_unchecked(cats, new_rev_map).into_series()
}
}src/chunked_array/logical/categorical/ops/zip.rs (lines 23-25)
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
pub(crate) fn zip_with(
&self,
mask: &BooleanChunked,
other: &CategoricalChunked,
) -> PolarsResult<Self> {
let cats = match &**self.get_rev_map() {
RevMapping::Local(rev_map) => {
// the logic for merging the rev maps will concatenate utf8 arrays
// to make sure the indexes still make sense we need to offset the right hand side
self.logical()
.zip_with(mask, &(other.logical() + rev_map.len() as u32))?
}
_ => self.logical().zip_with(mask, other.logical())?,
};
let new_state = self.merge_categorical_map(other)?;
// Safety:
// we checked the rev_maps.
unsafe {
Ok(CategoricalChunked::from_cats_and_rev_map_unchecked(
cats, new_state,
))
}
}src/chunked_array/logical/categorical/ops/unique.rs (line 20)
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
pub fn unique(&self) -> PolarsResult<Self> {
let cat_map = self.get_rev_map();
if self.can_fast_unique() {
let ca = match &**cat_map {
RevMapping::Local(a) => {
UInt32Chunked::from_iter_values(self.logical().name(), 0..(a.len() as u32))
}
RevMapping::Global(map, _, _) => {
UInt32Chunked::from_iter_values(self.logical().name(), map.keys().copied())
}
};
// safety:
// we only removed some indexes so we are still in bounds
unsafe {
let mut out =
CategoricalChunked::from_cats_and_rev_map_unchecked(ca, cat_map.clone());
out.set_fast_unique(true);
Ok(out)
}
} else {
let ca = self.logical().unique()?;
// safety:
// we only removed some indexes so we are still in bounds
unsafe {
Ok(CategoricalChunked::from_cats_and_rev_map_unchecked(
ca,
cat_map.clone(),
))
}
}
}src/series/into.rs (lines 53-56)
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
pub fn to_arrow(&self, chunk_idx: usize) -> ArrayRef {
match self.dtype() {
// special list branch to
// make sure that we recursively apply all logical types.
DataType::List(inner) => {
let ca = self.list().unwrap();
let arr = ca.chunks[chunk_idx].clone();
let arr = arr.as_any().downcast_ref::<ListArray<i64>>().unwrap();
let s = unsafe {
Series::from_chunks_and_dtype_unchecked("", vec![arr.values().clone()], inner)
};
let new_values = s.to_arrow(0);
let data_type = ListArray::<i64>::default_datatype(inner.to_arrow());
let arr = ListArray::<i64>::new(
data_type,
arr.offsets().clone(),
new_values,
arr.validity().cloned(),
);
Box::new(arr)
}
#[cfg(feature = "dtype-categorical")]
DataType::Categorical(_) => {
let ca = self.categorical().unwrap();
let arr = ca.logical().chunks()[chunk_idx].clone();
let cats = UInt32Chunked::from_chunks("", vec![arr]);
// safety:
// we only take a single chunk and change nothing about the index/rev_map mapping
let new = unsafe {
CategoricalChunked::from_cats_and_rev_map_unchecked(
cats,
ca.get_rev_map().clone(),
)
};
let arr: DictionaryArray<u32> = (&new).into();
Box::new(arr) as ArrayRef
}
#[cfg(feature = "dtype-date")]
DataType::Date => cast(&*self.chunks()[chunk_idx], &DataType::Date.to_arrow()).unwrap(),
#[cfg(feature = "dtype-datetime")]
DataType::Datetime(_, _) => {
cast(&*self.chunks()[chunk_idx], &self.dtype().to_arrow()).unwrap()
}
#[cfg(feature = "dtype-duration")]
DataType::Duration(_) => {
cast(&*self.chunks()[chunk_idx], &self.dtype().to_arrow()).unwrap()
}
#[cfg(feature = "dtype-time")]
DataType::Time => cast(&*self.chunks()[chunk_idx], &DataType::Time.to_arrow()).unwrap(),
_ => self.array_ref(chunk_idx).clone(),
}
}src/frame/hash_join/mod.rs (line 568)
515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581
pub fn _outer_join_from_series(
&self,
other: &DataFrame,
s_left: &Series,
s_right: &Series,
suffix: Option<String>,
slice: Option<(i64, usize)>,
) -> PolarsResult<DataFrame> {
#[cfg(feature = "dtype-categorical")]
_check_categorical_src(s_left.dtype(), s_right.dtype())?;
// store this so that we can keep original column order.
let join_column_index = self.iter().position(|s| s.name() == s_left.name()).unwrap();
// Get the indexes of the joined relations
let opt_join_tuples = s_left.hash_join_outer(s_right);
let mut opt_join_tuples = &*opt_join_tuples;
if let Some((offset, len)) = slice {
opt_join_tuples = slice_slice(opt_join_tuples, offset, len);
}
// Take the left and right dataframes by join tuples
let (mut df_left, df_right) = POOL.join(
|| unsafe {
self.drop(s_left.name()).unwrap().take_opt_iter_unchecked(
opt_join_tuples
.iter()
.map(|(left, _right)| left.map(|i| i as usize)),
)
},
|| unsafe {
other.drop(s_right.name()).unwrap().take_opt_iter_unchecked(
opt_join_tuples
.iter()
.map(|(_left, right)| right.map(|i| i as usize)),
)
},
);
let mut s = s_left
.to_physical_repr()
.zip_outer_join_column(&s_right.to_physical_repr(), opt_join_tuples);
s.rename(s_left.name());
let s = match s_left.dtype() {
#[cfg(feature = "dtype-categorical")]
DataType::Categorical(_) => {
let ca_left = s_left.categorical().unwrap();
let new_rev_map = ca_left.merge_categorical_map(s_right.categorical().unwrap())?;
let logical = s.u32().unwrap().clone();
// safety:
// categorical maps are merged
unsafe {
CategoricalChunked::from_cats_and_rev_map_unchecked(logical, new_rev_map)
.into_series()
}
}
dt @ DataType::Datetime(_, _)
| dt @ DataType::Time
| dt @ DataType::Date
| dt @ DataType::Duration(_) => s.cast(dt).unwrap(),
_ => s,
};
df_left.get_columns_mut().insert(join_column_index, s);
_finish_join(df_left, df_right, suffix.as_deref())
}Additional examples can be found in:
sourcepub fn get_rev_map(&self) -> &Arc<RevMapping>
pub fn get_rev_map(&self) -> &Arc<RevMapping>
Get a reference to the mapping of categorical types to the string values.
Examples found in repository?
More examples
src/chunked_array/logical/categorical/mod.rs (line 129)
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
pub fn iter_str(&self) -> CatIter<'_> {
let iter = self.logical().into_iter();
CatIter {
rev: self.get_rev_map(),
iter,
}
}
}
impl LogicalType for CategoricalChunked {
fn dtype(&self) -> &DataType {
self.logical.2.as_ref().unwrap()
}
fn get_any_value(&self, i: usize) -> PolarsResult<AnyValue<'_>> {
if i < self.len() {
Ok(unsafe { self.get_any_value_unchecked(i) })
} else {
Err(PolarsError::ComputeError("Index is out of bounds.".into()))
}
}
unsafe fn get_any_value_unchecked(&self, i: usize) -> AnyValue<'_> {
match self.logical.0.get_unchecked(i) {
Some(i) => AnyValue::Categorical(i, self.get_rev_map()),
None => AnyValue::Null,
}
}
fn cast(&self, dtype: &DataType) -> PolarsResult<Series> {
match dtype {
DataType::Utf8 => {
let mapping = &**self.get_rev_map();
let mut builder =
Utf8ChunkedBuilder::new(self.logical.name(), self.len(), self.len() * 5);
let f = |idx: u32| mapping.get(idx);
if !self.logical.has_validity() {
self.logical
.into_no_null_iter()
.for_each(|idx| builder.append_value(f(idx)));
} else {
self.logical.into_iter().for_each(|opt_idx| {
builder.append_option(opt_idx.map(f));
});
}
let ca = builder.finish();
Ok(ca.into_series())
}
DataType::UInt32 => {
let ca =
UInt32Chunked::from_chunks(self.logical.name(), self.logical.chunks.clone());
Ok(ca.into_series())
}
#[cfg(feature = "dtype-categorical")]
DataType::Categorical(_) => Ok(self.clone().into_series()),
_ => self.logical.cast(dtype),
}
}src/chunked_array/logical/categorical/ops/take_random.rs (line 26)
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
pub(crate) fn new(ca: &'a CategoricalChunked) -> Self {
// should be rechunked upstream
assert_eq!(ca.logical.chunks.len(), 1, "implementation error");
if let RevMapping::Local(rev_map) = &**ca.get_rev_map() {
let cats = ca.logical().take_rand();
Self { rev_map, cats }
} else {
unreachable!()
}
}
}
impl PartialOrdInner for CategoricalTakeRandomLocal<'_> {
unsafe fn cmp_element_unchecked(&self, idx_a: usize, idx_b: usize) -> Ordering {
let a = self
.cats
.get_unchecked(idx_a)
.map(|cat| self.rev_map.value_unchecked(cat as usize));
let b = self
.cats
.get_unchecked(idx_b)
.map(|cat| self.rev_map.value_unchecked(cat as usize));
a.partial_cmp(&b).unwrap()
}
}
pub(crate) struct CategoricalTakeRandomGlobal<'a> {
rev_map_part_1: &'a PlHashMap<u32, u32>,
rev_map_part_2: &'a Utf8Array<i64>,
cats: TakeCats<'a>,
}
impl<'a> CategoricalTakeRandomGlobal<'a> {
pub(crate) fn new(ca: &'a CategoricalChunked) -> Self {
// should be rechunked upstream
assert_eq!(ca.logical.chunks.len(), 1, "implementation error");
if let RevMapping::Global(rev_map_part_1, rev_map_part_2, _) = &**ca.get_rev_map() {
let cats = ca.logical().take_rand();
Self {
rev_map_part_1,
rev_map_part_2,
cats,
}
} else {
unreachable!()
}
}src/series/comparison.rs (line 75)
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
fn compare_cat_to_str_value<Compare>(
cat: &Series,
value: &str,
name: &str,
compare: Compare,
fill_value: bool,
) -> PolarsResult<BooleanChunked>
where
Compare: Fn(&Series, u32) -> PolarsResult<BooleanChunked>,
{
let cat = cat.categorical().expect("should be categorical");
let cat_map = cat.get_rev_map();
match cat_map.find(value) {
None => Ok(BooleanChunked::full(name, fill_value, cat.len())),
Some(cat_idx) => {
let cat = cat.cast(&DataType::UInt32).unwrap();
compare(&cat, cat_idx)
}
}
}sourcepub fn iter_str(&self) -> CatIter<'_> ⓘ
pub fn iter_str(&self) -> CatIter<'_> ⓘ
Create an [Iterator] that iterates over the &str values of the [CategoricalChunked].
Examples found in repository?
src/chunked_array/ops/sort/categorical.rs (line 57)
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
pub fn sort_with(&self, options: SortOptions) -> CategoricalChunked {
assert!(
!options.nulls_last,
"null last not yet supported for categorical dtype"
);
if self.use_lexical_sort() {
match &**self.get_rev_map() {
RevMapping::Local(arr) => {
// we don't use arrow2 sort here because its not activated
// that saves compilation
let ca = Utf8Chunked::from_chunks("", vec![Box::from(arr.clone())]);
let sorted = ca.sort(options.descending);
let arr = sorted.downcast_iter().next().unwrap().clone();
let rev_map = RevMapping::Local(arr);
// safety:
// we only reordered the indexes so we are still in bounds
unsafe {
CategoricalChunked::from_cats_and_rev_map_unchecked(
self.logical().clone(),
Arc::new(rev_map),
)
}
}
RevMapping::Global(_, _, _) => {
// a global rev map must always point to the same string values
// so we cannot sort the categories.
let mut vals = self
.logical()
.into_no_null_iter()
.zip(self.iter_str())
.collect_trusted::<Vec<_>>();
argsort_branch(
vals.as_mut_slice(),
options.descending,
|(_, a), (_, b)| order_default_null(a, b),
|(_, a), (_, b)| order_reverse_null(a, b),
);
let cats: NoNull<UInt32Chunked> =
vals.into_iter().map(|(idx, _v)| idx).collect_trusted();
// safety:
// we only reordered the indexes so we are still in bounds
unsafe {
CategoricalChunked::from_cats_and_rev_map_unchecked(
cats.into_inner(),
self.get_rev_map().clone(),
)
}
}
}
} else {
let cats = self.logical().sort_with(options);
// safety:
// we only reordered the indexes so we are still in bounds
unsafe {
CategoricalChunked::from_cats_and_rev_map_unchecked(
cats,
self.get_rev_map().clone(),
)
}
}
}
/// Returned a sorted `ChunkedArray`.
#[must_use]
pub fn sort(&self, reverse: bool) -> CategoricalChunked {
self.sort_with(SortOptions {
nulls_last: false,
descending: reverse,
})
}
/// Retrieve the indexes needed to sort this array.
pub fn argsort(&self, options: SortOptions) -> IdxCa {
if self.use_lexical_sort() {
let iters = [self.iter_str()];
argsort::argsort(
self.name(),
iters,
options,
self.logical().null_count(),
self.len(),
)
} else {
self.logical().argsort(options)
}
}
/// Retrieve the indexes need to sort this and the other arrays.
#[cfg(feature = "sort_multiple")]
pub(crate) fn argsort_multiple(
&self,
other: &[Series],
reverse: &[bool],
) -> PolarsResult<IdxCa> {
if self.use_lexical_sort() {
args_validate(self.logical(), other, reverse)?;
let mut count: IdxSize = 0;
let vals: Vec<_> = self
.iter_str()
.map(|v| {
let i = count;
count += 1;
(i, v)
})
.collect_trusted();
argsort_multiple_impl(vals, other, reverse)
} else {
self.logical().argsort_multiple(other, reverse)
}
}Trait Implementations§
source§impl Clone for CategoricalChunked
impl Clone for CategoricalChunked
source§fn clone(&self) -> CategoricalChunked
fn clone(&self) -> CategoricalChunked
Returns a copy of the value. Read more
1.0.0 · source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
Performs copy-assignment from
source. Read moresource§impl From<&CategoricalChunked> for DictionaryArray<i64>
impl From<&CategoricalChunked> for DictionaryArray<i64>
source§fn from(ca: &CategoricalChunked) -> Self
fn from(ca: &CategoricalChunked) -> Self
Converts to this type from the input type.
source§impl From<&CategoricalChunked> for DictionaryArray<u32>
impl From<&CategoricalChunked> for DictionaryArray<u32>
source§fn from(ca: &CategoricalChunked) -> Self
fn from(ca: &CategoricalChunked) -> Self
Converts to this type from the input type.
source§impl IntoSeries for CategoricalChunked
impl IntoSeries for CategoricalChunked
source§impl LogicalType for CategoricalChunked
impl LogicalType for CategoricalChunked
source§fn get_any_value(&self, i: usize) -> PolarsResult<AnyValue<'_>>
fn get_any_value(&self, i: usize) -> PolarsResult<AnyValue<'_>>
Gets AnyValue from LogicalType