1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
use std::ops::{Add, Div, Mul, Sub};

use arrow::bitmap::MutableBitmap;
use num::{FromPrimitive, Zero};

use crate::prelude::*;

fn linear_itp<T>(low: T, step: T, diff: T, steps_n: T) -> T
where
    T: Sub<Output = T> + Mul<Output = T> + Add<Output = T> + Div<Output = T>,
{
    low + step * diff / steps_n
}

#[inline]
fn signed_interp<T: PolarsNumericType>(
    low: T::Native,
    high: T::Native,
    steps: u32,
    steps_n: T::Native,
    av: &mut Vec<T::Native>,
) {
    let diff = high - low;
    for step_i in 1..steps {
        let step_i = T::Native::from_u32(step_i).unwrap();
        let v = linear_itp(low, step_i, diff, steps_n);
        av.push(v)
    }
}

#[inline]
fn unsigned_interp<T: PolarsNumericType>(
    low: T::Native,
    high: T::Native,
    steps: u32,
    steps_n: T::Native,
    av: &mut Vec<T::Native>,
) {
    if high >= low {
        signed_interp::<T>(low, high, steps, steps_n, av)
    } else {
        let diff = low - high;
        for step_i in (1..steps).rev() {
            let step_i = T::Native::from_u32(step_i).unwrap();
            let v = linear_itp(high, step_i, diff, steps_n);
            av.push(v)
        }
    }
}

impl<T: PolarsNumericType> ChunkedArray<T> {
    fn interpolate_impl<I>(&self, interpolation_branch: I) -> Self
    where
        I: Fn(T::Native, T::Native, u32, T::Native, &mut Vec<T::Native>),
    {
        // This implementation differs from pandas as that boundary None's are not removed
        // this prevents a lot of errors due to expressions leading to different lengths
        if !self.has_validity() || self.null_count() == self.len() {
            return self.clone();
        }

        // we first find the first and last so that we can set the null buffer
        let mut first = 0;
        let mut last = self.len();
        // find first non None
        for i in 0..self.len() {
            // Safety: we just bound checked
            if unsafe { self.get_unchecked(i).is_some() } {
                first = i;
                break;
            }
        }

        // find last non None
        for i in (0..self.len()).rev() {
            if unsafe { self.get_unchecked(i).is_some() } {
                last = i + 1;
                break;
            }
        }

        // fill av with first
        let mut av = Vec::with_capacity(self.len());
        let mut iter = self.into_iter();
        for _ in 0..first {
            av.push(Zero::zero())
        }

        let mut low_val = None;
        loop {
            let next = iter.next();
            match next {
                Some(Some(v)) => {
                    av.push(v);
                    low_val = Some(v);
                }
                Some(None) => {
                    match low_val {
                        // not a non-null value encountered yet
                        // so we skip
                        None => continue,
                        Some(low) => {
                            let mut steps = 1u32;
                            loop {
                                steps += 1;
                                match iter.next() {
                                    // end of iterator, break
                                    None => break,
                                    // another null
                                    Some(None) => {}
                                    Some(Some(high)) => {
                                        let steps_n = T::Native::from_u32(steps).unwrap();
                                        interpolation_branch(low, high, steps, steps_n, &mut av);
                                        av.push(high);
                                        low_val = Some(high);
                                        break;
                                    }
                                }
                            }
                        }
                    }
                }
                None => {
                    break;
                }
            }
        }
        if first != 0 || last != self.len() {
            let mut validity = MutableBitmap::with_capacity(self.len());
            validity.extend_constant(self.len(), true);

            for i in 0..first {
                validity.set(i, false);
            }

            for i in last..self.len() {
                validity.set(i, false);
                av.push(Zero::zero())
            }

            let array = PrimitiveArray::from_data(
                T::get_dtype().to_arrow(),
                av.into(),
                Some(validity.into()),
            );
            Self::from_chunks(self.name(), vec![Box::new(array)])
        } else {
            Self::from_vec(self.name(), av)
        }
    }
}

macro_rules! impl_interpolate {
    ($type:ident, $interpolation_branch:ident) => {
        impl Interpolate for ChunkedArray<$type> {
            fn interpolate(&self) -> Self {
                self.interpolate_impl($interpolation_branch::<$type>)
            }
        }
    };
}

#[cfg(feature = "dtype-u8")]
impl_interpolate!(UInt8Type, unsigned_interp);
#[cfg(feature = "dtype-u16")]
impl_interpolate!(UInt16Type, unsigned_interp);
impl_interpolate!(UInt32Type, unsigned_interp);
impl_interpolate!(UInt64Type, unsigned_interp);

#[cfg(feature = "dtype-i8")]
impl_interpolate!(Int8Type, signed_interp);
#[cfg(feature = "dtype-i16")]
impl_interpolate!(Int16Type, signed_interp);
impl_interpolate!(Int32Type, signed_interp);
impl_interpolate!(Int64Type, signed_interp);
impl_interpolate!(Float32Type, signed_interp);
impl_interpolate!(Float64Type, signed_interp);

#[cfg(test)]
mod test {
    use super::*;

    #[test]
    fn test_interpolate() {
        let ca = UInt32Chunked::new("", &[Some(1), None, None, Some(4), Some(5)]);
        let out = ca.interpolate();
        assert_eq!(
            Vec::from(&out),
            &[Some(1), Some(2), Some(3), Some(4), Some(5)]
        );

        let ca = UInt32Chunked::new("", &[None, Some(1), None, None, Some(4), Some(5)]);
        let out = ca.interpolate();
        assert_eq!(
            Vec::from(&out),
            &[None, Some(1), Some(2), Some(3), Some(4), Some(5)]
        );

        let ca = UInt32Chunked::new("", &[None, Some(1), None, None, Some(4), Some(5), None]);
        let out = ca.interpolate();
        assert_eq!(
            Vec::from(&out),
            &[None, Some(1), Some(2), Some(3), Some(4), Some(5), None]
        );
    }

    #[test]
    fn test_interpolate_decreasing_unsigned() {
        let ca = UInt32Chunked::new("", &[Some(4), None, None, Some(1)]);
        let out = ca.interpolate();
        assert_eq!(Vec::from(&out), &[Some(4), Some(3), Some(2), Some(1)])
    }

    #[test]
    fn test_interpolate2() {
        let ca = Float32Chunked::new(
            "",
            &[
                Some(4653f32),
                None,
                None,
                None,
                Some(4657f32),
                None,
                None,
                Some(4657f32),
                None,
                Some(4657f32),
                None,
                None,
                Some(4660f32),
            ],
        );
        let out = ca.interpolate();

        assert_eq!(
            Vec::from(&out),
            &[
                Some(4653.0),
                Some(4654.0),
                Some(4655.0),
                Some(4656.0),
                Some(4657.0),
                Some(4657.0),
                Some(4657.0),
                Some(4657.0),
                Some(4657.0),
                Some(4657.0),
                Some(4658.0),
                Some(4659.0),
                Some(4660.0)
            ]
        );
    }
}