1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
mod stream;

pub use self::stream::{StreamingDecoder, Decoded, DecodingError};
use self::stream::{CHUNCK_BUFFER_SIZE, get_info};

use std::mem;
use std::borrow;
use std::io::{Read, Write, BufReader, BufRead};

use traits::{HasParameters, Parameter};
use common::{ColorType, BitDepth, Info, Transformations};
use filter::{unfilter, FilterType};
use chunk::IDAT;
use utils;

/*
pub enum InterlaceHandling {
    /// Outputs the raw rows
    RawRows,
    /// Fill missing the pixels from the existing ones
    Rectangle,
    /// Only fill the needed pixels
    Sparkle
}

impl Parameter<Reader> for InterlaceHandling {
    fn set_param(self, this: &mut Reader) {
        this.color_output = self
    }
}*/


impl<R: Read> Parameter<Decoder<R>> for Transformations {
    fn set_param(self, this: &mut Decoder<R>) {
        this.transform = self
    }
}


/// Output info
pub struct OutputInfo {
    pub width: u32,
    pub height: u32,
    pub color_type: ColorType,
    pub bit_depth: BitDepth,
    pub line_size: usize,
}

impl OutputInfo {
    /// Returns the size needed to hold a decoded frame
    pub fn buffer_size(&self) -> usize {
        self.line_size * self.height as usize
    }
}

#[derive(Clone, Copy, Debug)]
pub struct Limits {
    /// max number of pixels: `width * height` (default: 67M = 2<sup>26</sup>)
    pub pixels: u64,
}

impl Default for Limits {
    fn default() -> Limits {
        Limits {
            pixels: 1 << 26,
        }
    }
}

/// PNG Decoder
pub struct Decoder<R: Read> {
    /// Reader
    r: R,
    /// Output transformations
    transform: Transformations,
    /// Images that are considered too big
    limits: Limits,
}

impl<R: Read> Decoder<R> {
    pub fn new(r: R) -> Decoder<R> {
        Decoder::new_with_limits(r, Limits::default())
    }
    
    pub fn new_with_limits(r: R, l: Limits) -> Decoder<R> {
        Decoder {
            r: r,
            transform: ::Transformations::EXPAND | ::Transformations::SCALE_16 | ::Transformations::STRIP_16,
            limits: l,
        }
    }

    /// Images that are considered too big
    ///
    /// ```
    /// use std::fs::File;
    /// use png::{Decoder, Limits};
    /// // This image is 32x32 pixels, so it's more than four pixels in size.
    /// let mut limits = Limits::default();
    /// limits.pixels = 4;
    /// let mut decoder = Decoder::new_with_limits(File::open("tests/pngsuite/basi0g01.png").unwrap(), limits);
    /// assert!(decoder.read_info().is_err());
    /// // This image is 32x32 pixels, so it's exactly 1024 pixels in size.
    /// let mut limits = Limits::default();
    /// limits.pixels = 1024;
    /// let mut decoder = Decoder::new_with_limits(File::open("tests/pngsuite/basi0g01.png").unwrap(), limits);
    /// assert!(decoder.read_info().is_ok());
    /// ```
    pub fn set_limits(&mut self, limits: Limits) {
        self.limits = limits;
    }

    /// Reads all meta data until the first IDAT chunk
    pub fn read_info(self) -> Result<(OutputInfo, Reader<R>), DecodingError> {
        let mut r = Reader::new(self.r, StreamingDecoder::new(), self.transform);
        try!(r.init());
        let (ct, bits) = r.output_color_type();
        let info = {
            let info = r.info();
            OutputInfo {
                width: info.width,
                height: info.height,
                color_type: ct,
                bit_depth: bits,
                line_size: r.output_line_size(info.width),
            }
        };
        let (width, height, pixels) = (info.width as u64, info.height as u64, self.limits.pixels);
        if width.checked_mul(height).map(|p| p > pixels).unwrap_or(true) {
            // DecodingError::Other is used for backwards compatibility.
            // In the next major version, add a variant for this.
            return Err(DecodingError::Other(borrow::Cow::Borrowed("pixels limit exceeded")));
        }
        Ok((info, r))
    }
}

impl<R: Read> HasParameters for Decoder<R> {}

struct ReadDecoder<R: Read> {
    reader: BufReader<R>,
    decoder: StreamingDecoder,
    at_eof: bool
}

impl<R: Read> ReadDecoder<R> {
    /// Returns the next decoded chunk. If the chunk is an ImageData chunk, its contents are written
    /// into image_data.
    fn decode_next(&mut self, image_data: &mut Vec<u8>) -> Result<Option<Decoded>, DecodingError> {
        while !self.at_eof {
            let (consumed, result) = {
                let buf = try!(self.reader.fill_buf());
                if buf.is_empty() {
                    return Err(DecodingError::Format(
                        "unexpected EOF".into()
                    ))
                }
                try!(self.decoder.update(buf, image_data))
            };
            self.reader.consume(consumed);
            match result {
                Decoded::Nothing => (),
                Decoded::ImageEnd => self.at_eof = true,
                result => return Ok(Some(result))
            }
        }
        Ok(None)
    }

    fn info(&self) -> Option<&Info> {
        get_info(&self.decoder)
    }
}

/// PNG reader (mostly high-level interface)
///
/// Provides a high level that iterates over lines or whole images.
pub struct Reader<R: Read> {
    decoder: ReadDecoder<R>,
    bpp: usize,
    rowlen: usize,
    adam7: Option<utils::Adam7Iterator>,
    /// Previous raw line
    prev: Vec<u8>,
    /// Current raw line
    current: Vec<u8>,
    /// Output transformations
    transform: Transformations,
    /// Processed line
    processed: Vec<u8>
}

macro_rules! get_info(
    ($this:expr) => {
        $this.decoder.info().unwrap()
    }
);

impl<R: Read> Reader<R> {
    /// Creates a new PNG reader
    fn new(r: R, d: StreamingDecoder, t: Transformations) -> Reader<R> {
        Reader {
            decoder: ReadDecoder {
                reader: BufReader::with_capacity(CHUNCK_BUFFER_SIZE, r),
                decoder: d,
                at_eof: false
            },
            bpp: 0,
            rowlen: 0,
            adam7: None,
            prev: Vec::new(),
            current: Vec::new(),
            transform: t,
            processed: Vec::new()
        }
    }

    /// Reads all meta data until the first IDAT chunk
    fn init(&mut self) -> Result<(), DecodingError> {
        use Decoded::*;
        if self.decoder.info().is_some() {
            Ok(())
        } else {
            loop {
                match try!(self.decoder.decode_next(&mut Vec::new())) {
                    Some(ChunkBegin(_, IDAT)) => break,
                    None => return Err(DecodingError::Format(
                        "IDAT chunk missing".into()
                    )),
                    _ => (),
                }
            }
            {
                let info = match self.decoder.info() {
                    Some(info) => info,
                    None => return Err(DecodingError::Format(
                      "IHDR chunk missing".into()
                    ))
                };
                self.bpp = info.bytes_per_pixel();
                self.rowlen = info.raw_row_length();
                if info.interlaced {
                    self.adam7 = Some(utils::Adam7Iterator::new(info.width, info.height))
                }
            }
            self.allocate_out_buf();
            self.prev = vec![0; self.rowlen];
            Ok(())
        }
    }

    pub fn info(&self) -> &Info {
        get_info!(self)
    }

    /// Decodes the next frame into `buf`
    pub fn next_frame(&mut self, buf: &mut [u8]) -> Result<(), DecodingError> {
        // TODO 16 bit
        let (color_type, _) = self.output_color_type();
        let width = get_info!(self).width;
        if buf.len() < self.output_buffer_size() {
            return Err(DecodingError::Other(
                "supplied buffer is too small to hold the image".into()
            ))
        }
        if get_info!(self).interlaced {
             while let Some((row, adam7)) = try!(self.next_interlaced_row()) {
                 let (pass, line, _) = adam7.unwrap();
                 let bytes = color_type.samples() as u8;
                 utils::expand_pass(buf, width * bytes as u32, row, pass, line, bytes);
             }
        } else {
            let mut len = 0;
            while let Some(row) = try!(self.next_row()) {
                len += try!((&mut buf[len..]).write(row));
            }
        }
        Ok(())
    }

    /// Returns the next processed row of the image
    pub fn next_row(&mut self) -> Result<Option<&[u8]>, DecodingError> {
        self.next_interlaced_row().map(|v| v.map(|v| v.0))
    }

    /// Returns the next processed row of the image
    pub fn next_interlaced_row(&mut self) -> Result<Option<(&[u8], Option<(u8, u32, u32)>)>, DecodingError> {
        use common::ColorType::*;
        let transform = self.transform;
        if transform == ::Transformations::IDENTITY {
            self.next_raw_interlaced_row()
        } else {
            // swap buffer to circumvent borrow issues
            let mut buffer = mem::replace(&mut self.processed, Vec::new());
            let (got_next, adam7) = if let Some((row, adam7)) = try!(self.next_raw_interlaced_row()) {
                try!((&mut buffer[..]).write(row));
                (true, adam7)
            } else {
                (false, None)
            };
            // swap back
            let _ = mem::replace(&mut self.processed, buffer);
            if got_next {
                let (color_type, bit_depth, trns) = {
                    let info = get_info!(self);
                    (info.color_type, info.bit_depth as u8, info.trns.is_some())
                };
                let output_buffer = if let Some((_, _, width)) = adam7 {
                    let width = self.line_size(width);
                    &mut self.processed[..width]
                } else {
                    &mut *self.processed
                };
                let mut len = output_buffer.len();
                if transform.contains(::Transformations::EXPAND) {
                    match color_type {
                        Indexed => {
                            expand_paletted(output_buffer, get_info!(self))?
                        }
                        Grayscale | GrayscaleAlpha if bit_depth < 8 => expand_gray_u8(
                            output_buffer, get_info!(self)
                        ),
                        Grayscale | RGB if trns => {
                            let channels = color_type.samples();
                            let trns = get_info!(self).trns.as_ref().unwrap();
                            if bit_depth == 8 {
                                utils::expand_trns_line(output_buffer, &*trns, channels);
                            } else {
                                utils::expand_trns_line16(output_buffer, &*trns, channels);
                            }
                        },
                        _ => ()
                    }
                }
                if bit_depth == 16 && transform.intersects(::Transformations::SCALE_16 | ::Transformations::STRIP_16) {
                    len /= 2;
                    for i in 0..len {
                        output_buffer[i] = output_buffer[2 * i];
                    }
                }
                Ok(Some((
                    &output_buffer[..len],
                    adam7
                )))
            } else {
                Ok(None)
            }
        }
    }

    /// Returns the color type and the number of bits per sample
    /// of the data returned by `Reader::next_row` and Reader::frames`.
    pub fn output_color_type(&mut self) -> (ColorType, BitDepth) {
        use common::ColorType::*;
        let t = self.transform;
        let info = get_info!(self);
        if t == ::Transformations::IDENTITY {
            (info.color_type, info.bit_depth)
        } else {
            let bits = match info.bit_depth as u8 {
                16 if t.intersects(
                    ::Transformations::SCALE_16 | ::Transformations::STRIP_16
                ) => 8,
                _ if t.contains(::Transformations::EXPAND) => 8,
                n => n
            };
            let color_type = if t.contains(::Transformations::EXPAND) {
                let has_trns = info.trns.is_some();
                match info.color_type {
                    Grayscale if has_trns => GrayscaleAlpha,
                    RGB if has_trns => RGBA,
                    Indexed if has_trns => RGBA,
                    Indexed => RGB,
                    ct => ct
                }
            } else {
                info.color_type
            };
            (color_type, BitDepth::from_u8(bits).unwrap())
        }
    }

    /// Returns the number of bytes required to hold a deinterlaced image frame
    /// that is decoded using the given input transformations.
    pub fn output_buffer_size(&self) -> usize {
        let (width, height) = get_info!(self).size();
        let size = self.output_line_size(width);
        size * height as usize
    }

    /// Returns the number of bytes required to hold a deinterlaced row.
    pub fn output_line_size(&self, width: u32) -> usize {
        let size = self.line_size(width);
        if get_info!(self).bit_depth as u8 == 16 && self.transform.intersects(
            ::Transformations::SCALE_16 | ::Transformations::STRIP_16
        ) {
            size / 2
        } else {
            size
        }
    }

    /// Returns the number of bytes required to decode a deinterlaced row.
    fn line_size(&self, width: u32) -> usize {
        use common::ColorType::*;
        let t = self.transform;
        let info = get_info!(self);
        let trns = info.trns.is_some();
        // TODO 16 bit
        let bits = match info.color_type {
            Indexed if trns && t.contains(::Transformations::EXPAND) => 4 * 8,
            Indexed if t.contains(::Transformations::EXPAND) => 3 * 8,
            RGB if trns && t.contains(::Transformations::EXPAND) => 4 * 8,
            Grayscale if trns && t.contains(::Transformations::EXPAND) => 2 * 8,
            Grayscale if t.contains(::Transformations::EXPAND) => 1 * 8,
            GrayscaleAlpha if t.contains(::Transformations::EXPAND) => 2 * 8,
            // divide by 2 as it will get mutiplied by two later
            _ if info.bit_depth as u8 == 16 => info.bits_per_pixel() / 2,
            _ => info.bits_per_pixel()
        }
        * width as usize
        * if info.bit_depth as u8 == 16 { 2 } else { 1 };
        let len = bits / 8;
        let extra = bits % 8;
        len + match extra { 0 => 0, _ => 1 }
    }

    fn allocate_out_buf(&mut self) {
        let width = get_info!(self).width;
        self.processed = vec![0; self.line_size(width)]
    }

    /// Returns the next raw row of the image
    fn next_raw_interlaced_row(&mut self) -> Result<Option<(&[u8], Option<(u8, u32, u32)>)>, DecodingError> {
        let _ = get_info!(self);
        let bpp = self.bpp;
        let (rowlen, passdata) = if let Some(ref mut adam7) = self.adam7 {
            let last_pass = adam7.current_pass();
            if let Some((pass, line, len)) = adam7.next() {
                let rowlen = get_info!(self).raw_row_length_from_width(len);
                if last_pass != pass {
                    self.prev.clear();
                    for _ in 0..rowlen {
                        self.prev.push(0);
                    }
                }
                (rowlen, Some((pass, line, len)))
            } else {
                return Ok(None)
            }
        } else {
            (self.rowlen, None)
        };
        loop {
            if self.current.len() >= rowlen {
                if let Some(filter) = FilterType::from_u8(self.current[0]) {
                    if let Err(message) = unfilter(filter, bpp, &self.prev[1..rowlen], &mut self.current[1..rowlen]) {
                        return Err(DecodingError::Format(
                            borrow::Cow::Borrowed(message)
                        ))
                    }
                    self.prev[..rowlen].copy_from_slice(&self.current[..rowlen]);
                    self.current.drain(0..rowlen);
                    return Ok(
                        Some((
                            &self.prev[1..rowlen],
                            passdata
                        ))
                    )
                } else {
                    return Err(DecodingError::Format(
                        format!("invalid filter method ({})", self.current[0]).into()
                    ))
                }
            } else {
                let val = try!(self.decoder.decode_next(&mut self.current));
                match val {
                    Some(Decoded::ImageData) => {}
                    None => {
                        if self.current.len() > 0 {
                            return Err(DecodingError::Format(
                              "file truncated".into()
                            ))
                        } else {
                            return Ok(None)
                        }
                    }
                    _ => ()
                }
            }
        }
    }
}

fn expand_paletted(buffer: &mut [u8], info: &Info) -> Result<(), DecodingError> {
    if let Some(palette) = info.palette.as_ref() {
        if let BitDepth::Sixteen = info.bit_depth {
            Err(DecodingError::Format("Bit depth '16' is not valid for paletted images".into()))
        } else {
            let black = [0, 0, 0];
            if let Some(ref trns) = info.trns {
                utils::unpack_bits(buffer, 4, info.bit_depth as u8, |i, chunk| {
                    let (rgb, a) = (
                        palette.get(3*i as usize..3*i as usize+3).unwrap_or(&black),
                        *trns.get(i as usize).unwrap_or(&0xFF)
                    );
                    chunk[0] = rgb[0];
                    chunk[1] = rgb[1];
                    chunk[2] = rgb[2];
                    chunk[3] = a;
                });
            } else {
                utils::unpack_bits(buffer, 3, info.bit_depth as u8, |i, chunk| {
                    let rgb = palette.get(3*i as usize..3*i as usize+3).unwrap_or(&black);
                    chunk[0] = rgb[0];
                    chunk[1] = rgb[1];
                    chunk[2] = rgb[2];
                })
            }
            Ok(())
        }
    } else {
        Err(DecodingError::Format("missing palette".into()))
    }
}

fn expand_gray_u8(buffer: &mut [u8], info: &Info) {
    let rescale = true;
    let scaling_factor = if rescale {
        (255)/((1u16 << info.bit_depth as u8) - 1) as u8
    } else {
        1
    };
    if let Some(ref trns) = info.trns {
        utils::unpack_bits(buffer, 2, info.bit_depth as u8, |pixel, chunk| {
            if pixel == trns[0] {
                chunk[1] = 0
            } else {
                chunk[1] = 0xFF
            }
            chunk[0] = pixel * scaling_factor
        })
    } else {
        utils::unpack_bits(buffer, 1, info.bit_depth as u8, |val, chunk| {
            chunk[0] = val * scaling_factor
        })
    }
}
/*
#[cfg(test)]
mod test {
    extern crate test;

    use std::fs::File;
    use std::io::Read;

    use super::Decoder;
    use HasParameters;

    #[bench]
    fn bench_big(b: &mut test::Bencher) {
        let mut data = Vec::new();
        File::open("tests/pngsuite/PngSuite.png").unwrap().read_to_end(&mut data).unwrap();
        let mut decoder = Decoder::new(&*data);
        decoder.set(::Transformations::IDENTITY);
        let (info, _) = decoder.read_info().unwrap();
        let mut image = vec![0; info.buffer_size()];
        b.iter(|| {
            let mut decoder = Decoder::new(&*data);
            decoder.set(::Transformations::IDENTITY);
            let (_, mut decoder) = decoder.read_info().unwrap();
            test::black_box(decoder.next_frame(&mut image)).unwrap();
        });
        b.bytes = info.buffer_size() as u64
    }
}
*/