1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
/*!
    Defines the drawing elements, the high-level drawing unit in Plotters drawing system

    ## Introduction
    An element is the drawing unit for Plotter's high-level drawing API.
    Different from low-level drawing API, an element is a logic unit of component in the image.
    There are few built-in elements, including `Circle`, `Pixel`, `Rectangle`, `Path`, `Text`, etc.

    All element can be drawn onto the drawing area using API `DrawingArea::draw(...)`.
    Plotters use "iterator of elements" as the abstraction of any type of plot.

    ## Implementing your own element
    You can also define your own element, `CandleStick` is a good sample of implementing complex
    element. There are two trait required for an element:

    - `PointCollection` - the struct should be able to return an iterator of key-points under guest coordinate
    - `Drawable` - the struct is a pending drawing operation on a drawing backend with pixel-based coordinate

    An example of element that draws a red "X" in a red rectangle onto the backend:

    ```rust
    use std::iter::{Once, once};
    use plotters::element::{PointCollection, Drawable};
    use plotters_backend::{BackendCoord, DrawingErrorKind, BackendStyle};
    use plotters::style::IntoTextStyle;
    use plotters::prelude::*;

    // Any example drawing a red X
    struct RedBoxedX((i32, i32));

    // For any reference to RedX, we can convert it into an iterator of points
    impl <'a> PointCollection<'a, (i32, i32)> for &'a RedBoxedX {
        type Point = &'a (i32, i32);
        type IntoIter = Once<&'a (i32, i32)>;
        fn point_iter(self) -> Self::IntoIter {
            once(&self.0)
        }
    }

    // How to actually draw this element
    impl <DB:DrawingBackend> Drawable<DB> for RedBoxedX {
        fn draw<I:Iterator<Item = BackendCoord>>(
            &self,
            mut pos: I,
            backend: &mut DB,
            _: (u32, u32),
        ) -> Result<(), DrawingErrorKind<DB::ErrorType>> {
            let pos = pos.next().unwrap();
            backend.draw_rect(pos, (pos.0 + 10, pos.1 + 12), &RED, false)?;
            let text_style = &("sans-serif", 20).into_text_style(&backend.get_size()).color(&RED);
            backend.draw_text("X", text_style, pos)
        }
    }

    fn main() -> Result<(), Box<dyn std::error::Error>> {
        let root = BitMapBackend::new(
            "plotters-doc-data/element-0.png",
            (640, 480)
        ).into_drawing_area();
        root.draw(&RedBoxedX((200, 200)))?;
        Ok(())
    }
    ```
      ![](https://plotters-rs.github.io/plotters-doc-data/element-0.png)

      ## Composable Elements
      You also have an convenient way to build an element that isn't built into the Plotters library by
      combining existing elements into a logic group. To build an composable element, you need to use an
      logic empty element that draws nothing to the backend but denotes the relative zero point of the logical
      group. Any element defined with pixel based offset coordinate can be added into the group later using
      the `+` operator.

      For example, the red boxed X element can be implemented with Composable element in the following way:
    ```rust
    use plotters::prelude::*;
    fn main() -> Result<(), Box<dyn std::error::Error>> {
        let root = BitMapBackend::new(
            "plotters-doc-data/element-1.png",
            (640, 480)
        ).into_drawing_area();
        let font:FontDesc = ("sans-serif", 20).into();
        root.draw(&(EmptyElement::at((200, 200))
                + Text::new("X", (0, 0), &"sans-serif".into_font().resize(20.0).color(&RED))
                + Rectangle::new([(0,0), (10, 12)], &RED)
        ))?;
        Ok(())
    }
    ```
    ![](https://plotters-rs.github.io/plotters-doc-data/element-1.png)

    ## Dynamic Elements
    By default, Plotters uses static dispatch for all the elements and series. For example,
    the `ChartContext::draw_series` method accepts an iterator of `T` where type `T` implements
    all the traits a element should implement. Although, we can use the series of composable element
    for complex series drawing. But sometimes, we still want to make the series heterogynous, which means
    the iterator should be able to holds elements in different type.
    For example, a point series with cross and circle. This requires the dynamically dispatched elements.
    In plotters, all the elements can be converted into `DynElement`, the dynamic dispatch container for
    all elements (include external implemented ones).
    Plotters automatically implements `IntoDynElement` for all elements, by doing so, any dynamic element should have
    `into_dyn` function which would wrap the element into a dynamic element wrapper.

    For example, the following code counts the number of factors of integer and mark all prime numbers in cross.
    ```rust
    use plotters::prelude::*;
    fn num_of_factor(n: i32) -> i32 {
        let mut ret = 2;
        for i in 2..n {
            if i * i > n {
                break;
            }

            if n % i == 0 {
                if i * i != n {
                    ret += 2;
                } else {
                    ret += 1;
                }
            }
        }
        return ret;
    }
    fn main() -> Result<(), Box<dyn std::error::Error>> {
        let root =
            BitMapBackend::new("plotters-doc-data/element-3.png", (640, 480))
            .into_drawing_area();
        root.fill(&WHITE)?;
        let mut chart = ChartBuilder::on(&root)
            .x_label_area_size(40)
            .y_label_area_size(40)
            .margin(5)
            .build_cartesian_2d(0..50, 0..10)?;

        chart
            .configure_mesh()
            .disable_x_mesh()
            .disable_y_mesh()
            .draw()?;

        chart.draw_series((0..50).map(|x| {
            let center = (x, num_of_factor(x));
            // Although the arms of if statement has different types,
            // but they can be placed into a dynamic element wrapper,
            // by doing so, the type is unified.
            if center.1 == 2 {
                Cross::new(center, 4, Into::<ShapeStyle>::into(&RED).filled()).into_dyn()
            } else {
                Circle::new(center, 4, Into::<ShapeStyle>::into(&GREEN).filled()).into_dyn()
            }
        }))?;

        Ok(())
    }
    ```
    ![](https://plotters-rs.github.io/plotters-doc-data/element-3.png)
*/
use plotters_backend::{BackendCoord, DrawingBackend, DrawingErrorKind};
use std::borrow::Borrow;

mod basic_shapes;
pub use basic_shapes::*;

mod basic_shapes_3d;
pub use basic_shapes_3d::*;

mod text;
pub use text::*;

mod points;
pub use points::*;

mod composable;
pub use composable::{ComposedElement, EmptyElement};

#[cfg(feature = "candlestick")]
mod candlestick;
#[cfg(feature = "candlestick")]
#[cfg_attr(doc_cfg, doc(cfg(feature = "candlestick")))]
pub use candlestick::CandleStick;

#[cfg(feature = "errorbar")]
mod errorbar;
#[cfg(feature = "errorbar")]
#[cfg_attr(doc_cfg, doc(cfg(feature = "errorbar")))]
pub use errorbar::{ErrorBar, ErrorBarOrientH, ErrorBarOrientV};

#[cfg(feature = "boxplot")]
mod boxplot;
#[cfg(feature = "boxplot")]
#[cfg_attr(doc_cfg, doc(cfg(feature = "boxplot")))]
pub use boxplot::Boxplot;

#[cfg(feature = "bitmap_backend")]
mod image;
#[cfg(feature = "bitmap_backend")]
#[cfg_attr(doc_cfg, doc(cfg(feature = "bitmap_backend")))]
pub use self::image::BitMapElement;

mod dynelem;
pub use dynelem::{DynElement, IntoDynElement};

mod pie;
pub use pie::Pie;

use crate::coord::CoordTranslate;
use crate::drawing::Rect;

/// A type which is logically a collection of points, under any given coordinate system.
/// Note: Ideally, a point collection trait should be any type of which coordinate elements can be
/// iterated. This is similar to `iter` method of many collection types in std.
///
/// ```ignore
/// trait PointCollection<Coord> {
///     type PointIter<'a> : Iterator<Item = &'a Coord>;
///     fn iter(&self) -> PointIter<'a>;
/// }
/// ```
///
/// However,
/// [Generic Associated Types](https://github.com/rust-lang/rfcs/blob/master/text/1598-generic_associated_types.md)
/// is far away from stabilize.
/// So currently we have the following workaround:
///
/// Instead of implement the PointCollection trait on the element type itself, it implements on the
/// reference to the element. By doing so, we now have a well-defined lifetime for the iterator.
///
/// In addition, for some element, the coordinate is computed on the fly, thus we can't hard-code
/// the iterator's return type is `&'a Coord`.
/// `Borrow` trait seems to strict in this case, since we don't need the order and hash
/// preservation properties at this point. However, `AsRef` doesn't work with `Coord`
///
/// This workaround also leads overly strict lifetime bound on `ChartContext::draw_series`.
///
/// TODO: Once GAT is ready on stable Rust, we should simplify the design.
///
pub trait PointCollection<'a, Coord, CM = BackendCoordOnly> {
    /// The item in point iterator
    type Point: Borrow<Coord> + 'a;

    /// The point iterator
    type IntoIter: IntoIterator<Item = Self::Point>;

    /// framework to do the coordinate mapping
    fn point_iter(self) -> Self::IntoIter;
}
/// The trait indicates we are able to draw it on a drawing area
pub trait Drawable<DB: DrawingBackend, CM: CoordMapper = BackendCoordOnly> {
    /// Actually draws the element. The key points is already translated into the
    /// image coordinate and can be used by DC directly
    fn draw<I: Iterator<Item = CM::Output>>(
        &self,
        pos: I,
        backend: &mut DB,
        parent_dim: (u32, u32),
    ) -> Result<(), DrawingErrorKind<DB::ErrorType>>;
}

/// Useful to translate from guest coordinates to backend coordinates
pub trait CoordMapper {
    /// Specifies the output data from the translation
    type Output;
    /// Performs the translation from guest coordinates to backend coordinates
    fn map<CT: CoordTranslate>(coord_trans: &CT, from: &CT::From, rect: &Rect) -> Self::Output;
}

/// Used for 2d coordinate transformations.
pub struct BackendCoordOnly;

impl CoordMapper for BackendCoordOnly {
    type Output = BackendCoord;
    fn map<CT: CoordTranslate>(coord_trans: &CT, from: &CT::From, rect: &Rect) -> BackendCoord {
        rect.truncate(coord_trans.translate(from))
    }
}

/**
Used for 3d coordinate transformations.

See [`Cubiod`] for more information and an example.
*/
pub struct BackendCoordAndZ;

impl CoordMapper for BackendCoordAndZ {
    type Output = (BackendCoord, i32);
    fn map<CT: CoordTranslate>(
        coord_trans: &CT,
        from: &CT::From,
        rect: &Rect,
    ) -> (BackendCoord, i32) {
        let coord = rect.truncate(coord_trans.translate(from));
        let z = coord_trans.depth(from);
        (coord, z)
    }
}