1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
use crate::style::{HSLColor, RGBAColor, RGBColor};

use num_traits::{Float, FromPrimitive, ToPrimitive};

/// Converts scalar values to colors.
pub trait ColorMap<ColorType: crate::prelude::Color, FloatType = f32>
where
    FloatType: Float,
{
    /// Takes a scalar value 0.0 <= h <= 1.0 and returns the corresponding color.
    /// Typically color-scales are named according to which color-type they return.
    /// To use upper and lower bounds with ths function see [get_color_normalized](ColorMap::get_color_normalized).
    fn get_color(&self, h: FloatType) -> ColorType {
        self.get_color_normalized(h, FloatType::zero(), FloatType::one())
    }

    /// A slight abstraction over [get_color](ColorMap::get_color) function where lower and upper bound can be specified.
    fn get_color_normalized(&self, h: FloatType, min: FloatType, max: FloatType) -> ColorType;
}

/// This struct is used to dynamically construct colormaps by giving it a slice of colors.
/// It can then be used when being intantiated, but not with associated functions.
/// ```
/// use plotters::prelude::{BLACK,BLUE,WHITE,DerivedColorMap,ColorMap};
///
/// let derived_colormap = DerivedColorMap::new(
///     &[BLACK,
///     BLUE,
///     WHITE]
/// );
///
/// assert_eq!(derived_colormap.get_color(0.0), BLACK);
/// assert_eq!(derived_colormap.get_color(0.5), BLUE);
/// assert_eq!(derived_colormap.get_color(1.0), WHITE);
/// ```
pub struct DerivedColorMap<ColorType> {
    colors: Vec<ColorType>,
}

impl<ColorType: crate::style::Color + Clone> DerivedColorMap<ColorType> {
    /// This function lets the user define a new colormap by simply specifying colors in the correct order.
    /// For calculation of the color values, the colors will be spaced evenly apart.
    pub fn new(colors: &[ColorType]) -> Self {
        DerivedColorMap {
            colors: colors.to_vec(),
        }
    }
}

macro_rules! calculate_new_color_value(
    ($relative_difference:expr, $colors:expr, $index_upper:expr, $index_lower:expr, RGBColor) => {
        RGBColor(
            // These equations are a very complicated way of writing a simple linear extrapolation with lots of casting between numerical values
            // In principle every cast should be safe which is why we choose to unwrap
            //           (1.0  - r)                   *                                        color_value_1  +                    r *                                       color_value_2
            ((FloatType::one() - $relative_difference) * FloatType::from_u8($colors[$index_upper].0).unwrap() + $relative_difference * FloatType::from_u8($colors[$index_lower].0).unwrap()).round().to_u8().unwrap(),
            ((FloatType::one() - $relative_difference) * FloatType::from_u8($colors[$index_upper].1).unwrap() + $relative_difference * FloatType::from_u8($colors[$index_lower].1).unwrap()).round().to_u8().unwrap(),
            ((FloatType::one() - $relative_difference) * FloatType::from_u8($colors[$index_upper].2).unwrap() + $relative_difference * FloatType::from_u8($colors[$index_lower].2).unwrap()).round().to_u8().unwrap()
        )
    };
    ($relative_difference:expr, $colors:expr, $index_upper:expr, $index_lower:expr, RGBAColor) => {
        RGBAColor(
            // These equations are a very complicated way of writing a simple linear extrapolation with lots of casting between numerical values
            // In principle every cast should be safe which is why we choose to unwrap
            //           (1.0  - r)                   *                                        color_value_1  +                    r *                                       color_value_2
            ((FloatType::one() - $relative_difference) * FloatType::from_u8($colors[$index_upper].0).unwrap() + $relative_difference * FloatType::from_u8($colors[$index_lower].0).unwrap()).round().to_u8().unwrap(),
            ((FloatType::one() - $relative_difference) * FloatType::from_u8($colors[$index_upper].1).unwrap() + $relative_difference * FloatType::from_u8($colors[$index_lower].1).unwrap()).round().to_u8().unwrap(),
            ((FloatType::one() - $relative_difference) * FloatType::from_u8($colors[$index_upper].2).unwrap() + $relative_difference * FloatType::from_u8($colors[$index_lower].2).unwrap()).round().to_u8().unwrap(),
            ((FloatType::one() - $relative_difference) * FloatType::from_f64($colors[$index_upper].3).unwrap() + $relative_difference * FloatType::from_f64($colors[$index_lower].3).unwrap()).to_f64().unwrap()
        )
    };
    ($relative_difference:expr, $colors:expr, $index_upper:expr, $index_lower:expr, HSLColor) => {
        HSLColor(
            // These equations are a very complicated way of writing a simple linear extrapolation with lots of casting between numerical values
            // In principle every cast should be safe which is why we choose to unwrap
            //           (1.0  - r)                   *                                         color_value_1  +                    r *                                        color_value_2
            ((FloatType::one() - $relative_difference) * FloatType::from_f64($colors[$index_upper].0).unwrap() + $relative_difference * FloatType::from_f64($colors[$index_lower].0).unwrap()).to_f64().unwrap(),
            ((FloatType::one() - $relative_difference) * FloatType::from_f64($colors[$index_upper].1).unwrap() + $relative_difference * FloatType::from_f64($colors[$index_lower].1).unwrap()).to_f64().unwrap(),
            ((FloatType::one() - $relative_difference) * FloatType::from_f64($colors[$index_upper].2).unwrap() + $relative_difference * FloatType::from_f64($colors[$index_lower].2).unwrap()).to_f64().unwrap(),
        )
    };
);

fn calculate_relative_difference_index_lower_upper<
    FloatType: Float + FromPrimitive + ToPrimitive,
>(
    h: FloatType,
    min: FloatType,
    max: FloatType,
    n_colors: usize,
) -> (FloatType, usize, usize) {
    // Ensure that we do have a value in bounds
    let h = num_traits::clamp(h, min, max);
    // Next calculate a normalized value between 0.0 and 1.0
    let t = (h - min) / (max - min);
    let approximate_index =
        t * (FloatType::from_usize(n_colors).unwrap() - FloatType::one()).max(FloatType::zero());
    // Calculate which index are the two most nearest of the supplied value
    let index_lower = approximate_index.floor().to_usize().unwrap();
    let index_upper = approximate_index.ceil().to_usize().unwrap();
    // Calculate the relative difference, ie. is the actual value more towards the color of index_upper or index_lower?
    let relative_difference = approximate_index.ceil() - approximate_index;
    (relative_difference, index_lower, index_upper)
}

macro_rules! implement_color_scale_for_derived_color_map{
    ($($color_type:ident),+) => {
        $(
            impl<FloatType: Float + FromPrimitive + ToPrimitive> ColorMap<$color_type, FloatType> for DerivedColorMap<$color_type> {
                fn get_color_normalized(&self, h: FloatType, min: FloatType, max: FloatType) -> $color_type {
                    let (
                        relative_difference,
                        index_lower,
                        index_upper
                    ) = calculate_relative_difference_index_lower_upper(
                        h,
                        min,
                        max,
                        self.colors.len()
                    );
                    // Interpolate the final color linearly
                    calculate_new_color_value!(
                        relative_difference,
                        self.colors,
                        index_upper,
                        index_lower,
                        $color_type
                    )
                }
            }
        )+
    }
}

implement_color_scale_for_derived_color_map! {RGBAColor, RGBColor, HSLColor}

macro_rules! count {
    () => (0usize);
    ($x:tt $($xs:tt)* ) => (1usize + count!($($xs)*));
}

macro_rules! define_colors_from_list_of_values_or_directly{
    ($color_type:ident, $(($($color_value:expr),+)),+) => {
        [$($color_type($($color_value),+)),+]
    };
    ($($color_complete:tt),+) => {
        [$($color_complete),+]
    };
}

macro_rules! implement_linear_interpolation_color_map {
    ($color_scale_name:ident, $color_type:ident) => {
        impl<FloatType: std::fmt::Debug + Float + FromPrimitive + ToPrimitive>
            ColorMap<$color_type, FloatType> for $color_scale_name
        {
            fn get_color_normalized(
                &self,
                h: FloatType,
                min: FloatType,
                max: FloatType,
            ) -> $color_type {
                let (
                    relative_difference,
                    index_lower,
                    index_upper
                ) = calculate_relative_difference_index_lower_upper(
                    h,
                    min,
                    max,
                    Self::COLORS.len()
                );
                // Interpolate the final color linearly
                calculate_new_color_value!(
                    relative_difference,
                    Self::COLORS,
                    index_upper,
                    index_lower,
                    $color_type
                )
            }
        }

        impl $color_scale_name {
            #[doc = "Get color value from `"]
            #[doc = stringify!($color_scale_name)]
            #[doc = "` by supplying a parameter 0.0 <= h <= 1.0"]
            pub fn get_color<FloatType: std::fmt::Debug + Float + FromPrimitive + ToPrimitive>(
                h: FloatType,
            ) -> $color_type {
                let color_scale = $color_scale_name {};
                color_scale.get_color(h)
            }

            #[doc = "Get color value from `"]
            #[doc = stringify!($color_scale_name)]
            #[doc = "` by supplying lower and upper bounds min, max and a parameter h where min <= h <= max"]
            pub fn get_color_normalized<
                FloatType: std::fmt::Debug + Float + FromPrimitive + ToPrimitive,
            >(
                h: FloatType,
                min: FloatType,
                max: FloatType,
            ) -> $color_type {
                let color_scale = $color_scale_name {};
                color_scale.get_color_normalized(h, min, max)
            }
        }
    };
}

#[macro_export]
/// Macro to create a new colormap with evenly spaced colors at compile-time.
macro_rules! define_linear_interpolation_color_map{
    ($color_scale_name:ident, $color_type:ident, $doc:expr, $(($($color_value:expr),+)),*) => {
        #[doc = $doc]
        pub struct $color_scale_name {}

        impl $color_scale_name {
            // const COLORS: [$color_type; $number_colors] = [$($color_type($($color_value),+)),+];
            // const COLORS: [$color_type; count!($(($($color_value:expr),+))*)] = [$($color_type($($color_value),+)),+];
            const COLORS: [$color_type; count!($(($($color_value:expr),+))*)] = define_colors_from_list_of_values_or_directly!{$color_type, $(($($color_value),+)),*};
        }

        implement_linear_interpolation_color_map!{$color_scale_name, $color_type}
    };
    ($color_scale_name:ident, $color_type:ident, $doc:expr, $($color_complete:tt),+) => {
        #[doc = $doc]
        pub struct $color_scale_name {}

        impl $color_scale_name {
            const COLORS: [$color_type; count!($($color_complete)*)] = define_colors_from_list_of_values_or_directly!{$($color_complete),+};
        }

        implement_linear_interpolation_color_map!{$color_scale_name, $color_type}
    }
}

define_linear_interpolation_color_map! {
    ViridisRGBA,
    RGBAColor,
    "A colormap optimized for visually impaired people (RGBA format).
    It is currently the default colormap also used by [matplotlib](https://matplotlib.org/stable/tutorials/colors/colormaps.html).
    Read more in this [paper](https://doi.org/10.1371/journal.pone.0199239)",
    ( 68,   1,  84, 1.0),
    ( 70,  50, 127, 1.0),
    ( 54,  92, 141, 1.0),
    ( 39, 127, 143, 1.0),
    ( 31, 162, 136, 1.0),
    ( 74, 194, 110, 1.0),
    (160, 219,  57, 1.0),
    (254, 232,  37, 1.0)
}

define_linear_interpolation_color_map! {
    ViridisRGB,
    RGBColor,
    "A colormap optimized for visually impaired people (RGB Format).
    It is currently the default colormap also used by [matplotlib](https://matplotlib.org/stable/tutorials/colors/colormaps.html).
    Read more in this [paper](https://doi.org/10.1371/journal.pone.0199239)",
    ( 68,   1,  84),
    ( 70,  50, 127),
    ( 54,  92, 141),
    ( 39, 127, 143),
    ( 31, 162, 136),
    ( 74, 194, 110),
    (160, 219,  57),
    (254, 232,  37)
}

define_linear_interpolation_color_map! {
    BlackWhite,
    RGBColor,
    "Simple chromatic colormap from black to white.",
    (  0,   0,   0),
    (255, 255,   255)
}

define_linear_interpolation_color_map! {
    MandelbrotHSL,
    HSLColor,
    "Colormap created to replace the one used in the mandelbrot example.",
    (0.0, 1.0, 0.5),
    (1.0, 1.0, 0.5)
}

define_linear_interpolation_color_map! {
    VulcanoHSL,
    HSLColor,
    "A vulcanic colormap that display red/orange and black colors",
    (2.0/3.0, 1.0, 0.7),
    (    0.0, 1.0, 0.7)
}

use super::full_palette::*;
define_linear_interpolation_color_map! {
    Bone,
    RGBColor,
    "Dark colormap going from black over blue to white.",
    BLACK,
    BLUE,
    WHITE
}

define_linear_interpolation_color_map! {
    Copper,
    RGBColor,
    "Friendly black to brown colormap.",
    BLACK,
    BROWN,
    ORANGE
}