1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
//! A small Rust library that allows users to reinterpret data of certain types safely.
//!
//! This crate provides an unsafe trait [`Plain`](trait.Plain.html), which the user
//! of the crate uses to mark types for which operations of this library are safe.
//! See [`Plain`](trait.Plain.html) for the contractual obligation.
//!
//! Other than that, everything else in this crate is perfectly safe to use as long
//! as the `Plain` trait is not implemented on inadmissible types (similar to how
//! `Send` and `Sync` in the standard library work).
//!
//! # Examples
//!
//! To start using the crate, simply do `extern crate plain;`.
//!
//! If you want your plain types to have methods from this crate, also include `use plain.Plain;`.
//!
//! Then it's just a matter of marking the right types and using them.
//!
//! ```
//!
//! extern crate plain;
//! use plain::Plain;
//!
//!
//!
//! #[repr(C)]
//! #[derive(Default)]
//! struct ELF64Header {
//!     pub e_ident: [u8; 16],
//!     pub e_type: u16,
//!     pub e_machine: u16,
//!     pub e_version: u32,
//!     pub e_entry: u64,
//!     pub e_phoff: u64,
//!     pub e_shoff: u64,
//!     pub e_flags: u32,
//!     pub e_ehsize: u16,
//!     pub e_phentsize: u16,
//!     pub e_phnum: u16,
//!     pub e_shentsize: u16,
//!     pub e_shnum: u16,
//!     pub e_shstrndx: u16,
//! }
//!
//! // SAFE: ELF64Header satisfies all the requirements of `Plain`.
//! unsafe impl Plain for ELF64Header {}
//!
//! fn reinterpret_buffer(buf: &[u8]) -> &ELF64Header {
//!     match plain::from_bytes(buf) {
//!         Err(_) => panic!("The buffer is either too short or not aligned!"),
//!         Ok(elfref) => elfref,
//!     }
//! }
//!
//! fn copy_from_buffer(buf: &[u8]) -> ELF64Header {
//!     let mut h = ELF64Header::default();
//!     h.as_mut_bytes().copy_from_slice(buf);
//!     h
//! }
//!
//! #[repr(C)]
//! struct ArrayEntry {
//!     pub name: [u8; 64],
//!     pub tag: u32,
//!     pub score: u32,
//! }
//!
//! // SAFE: ArrayEntry satisfies all the requirements of `Plain`.
//! unsafe impl Plain for ArrayEntry {}
//!
//! fn array_from_bytes(buf: &[u8]) -> &[ArrayEntry] {
//!     // NOTE: length is not a concern here,
//!     // since slice_from_bytes() can return empty slice.
//!
//!     match plain::slice_from_bytes(buf) {
//!         Err(_) => panic!("The buffer is not aligned!"),
//!         Ok(arr) => arr,
//!     }
//! }
//!
//! # fn main() {}
//!
//! ```
//!
//! # Comparison to [`pod`](https://crates.io/crates/pod)
//!
//! [`pod`](https://crates.io/crates/pod) is another crate created to help working with plain data.
//! The major difference between `pod` and `plain` is scope.
//!
//! `plain` currently provides only a few functions (+method wrappers) and its implementation
//! involves very few lines of unsafe code. It can be used in `no_std` code. Also, it doesn't
//! deal with [endianness](https://en.wikipedia.org/wiki/Endianness) in any way,
//! so it is only suitable for certain kinds of low-level work.
//!
//! `pod`, on the other hand, provides a wide arsenal
//! of various methods, most of which may be unnecessary for a given use case.
//! It has dependencies on `std` as well as other crates, but among other things
//! it provides tools to handle endianness properly.
//!
//! In short, `plain` is much, much _plainer_...

#![no_std]

#[cfg(test)]
#[macro_use]
extern crate std;

use core::{mem, slice};

/// A trait for plain reinterpretable data.
///
/// A type can be [`Plain`](trait.Plain.html) if it is `#repr(C)` and only contains
/// data with no possible invalid values. Specifically,
/// `bool`, `char`, `enum`s, tuples, pointers and references are not
/// `Plain`. On the other hand, arrays of a `Plain` type, and
/// structures where all members are plain, are usually okay.
///
/// On top of this, implicit padding may technically be uninitialized bytes,
/// therefore reading them might constitute undefined behavior by definition.
/// As such, you currently must not apply `Plain` to structures with implicit
/// padding. I.e. the size of the whole struct (as returned by `mem::size_of`)
/// must be equal to the sum of sizes of its fields. The easiest way to assure
/// this is learning padding rules for `#repr(C)` and explicitly provide
/// padding as dummy fields where appropriate.
///
/// All methods of this trait are implemented automatically as wrappers
/// for crate-level funtions.
///
pub unsafe trait Plain {
    #[inline]
    fn from_bytes(bytes: &[u8]) -> Result<&Self, Error>
        where Self: Sized
    {
        self::from_bytes(bytes)
    }

    #[inline]
    fn slice_from_bytes(bytes: &[u8]) -> Result<&[Self], Error>
        where Self: Sized
    {
        self::slice_from_bytes(bytes)
    }

    #[inline]
    fn slice_from_bytes_len(bytes: &[u8], len: usize) -> Result<&[Self], Error>
        where Self: Sized
    {
        self::slice_from_bytes_len(bytes, len)
    }

    #[inline]
    fn from_mut_bytes(bytes: &mut [u8]) -> Result<&mut Self, Error>
        where Self: Sized
    {
        self::from_mut_bytes(bytes)
    }

    #[inline]
    fn slice_from_mut_bytes(bytes: &mut [u8]) -> Result<&mut [Self], Error>
        where Self: Sized
    {
        self::slice_from_mut_bytes(bytes)
    }

    #[inline]
    fn slice_from_mut_bytes_len(bytes: &mut [u8], len: usize) -> Result<&mut [Self], Error>
        where Self: Sized
    {
        self::slice_from_mut_bytes_len(bytes, len)
    }

    #[inline(always)]
    fn as_bytes(&self) -> &[u8] {
        self::as_bytes(self)
    }

    #[inline(always)]
    fn as_mut_bytes(&mut self) -> &mut [u8] {
        self::as_mut_bytes(self)
    }
}

unsafe impl Plain for u8 {}
unsafe impl Plain for u16 {}
unsafe impl Plain for u32 {}
unsafe impl Plain for u64 {}
unsafe impl Plain for usize {}

unsafe impl Plain for i8 {}
unsafe impl Plain for i16 {}
unsafe impl Plain for i32 {}
unsafe impl Plain for i64 {}
unsafe impl Plain for isize {}

unsafe impl Plain for f32 {}
unsafe impl Plain for f64 {}

unsafe impl<S> Plain for [S] where S: Plain {}


#[derive(Debug, Copy, Clone, Eq, PartialEq)]
pub enum Error {
    TooShort,
    BadAlignment,
}

#[inline(always)]
fn check_instance_size<T>(bytes: &[u8]) -> Result<(), Error> {
    if bytes.len() < mem::size_of::<T>() {
        // slice is too short for target type
        Err(Error::TooShort)
    } else {
        Ok(())
    }
}

#[inline(always)]
fn check_slice_size<T>(bytes: &[u8], len: usize) -> Result<(), Error> {
    if bytes.len() < len * mem::size_of::<T>() {
        Err(Error::TooShort)
    } else {
        Ok(())
    }
}

#[inline(always)]
fn check_alignment<T>(bytes: &[u8]) -> Result<(), Error> {
    let align_offset = (bytes.as_ptr() as usize) % mem::align_of::<T>();

    if align_offset != 0 {
        // badly aligned slice
        Err(Error::BadAlignment)
    } else {
        Ok(())
    }
}

/// Safely converts a reference to an immutable
/// byte slice of appropriate length.
///
/// This function cannot fail.
///
#[inline]
pub fn as_bytes<S>(s: &S) -> &[u8]
    where S: Plain + ?Sized
{
    // Even though slices can't under normal circumstances be cast
    // to pointers, here in generic code it works.
    // This means that `s` can be a slice or a regular reference,
    // at the caller's discretion.
    let bptr = s as *const S as *const u8;
    let bsize = mem::size_of_val(s);
    unsafe { slice::from_raw_parts(bptr, bsize) }
}

/// Safely converts a reference to a mutable
/// byte slice of appropriate length.
///
/// This function cannot fail.
///
#[inline]
pub fn as_mut_bytes<S>(s: &mut S) -> &mut [u8]
    where S: Plain + ?Sized
{
    let bptr = s as *mut S as *mut u8;
    let bsize = mem::size_of_val(s);
    unsafe { slice::from_raw_parts_mut(bptr, bsize) }
}

/// Safely converts a byte slice to a reference.
///
/// However, if the byte slice is not long enough
/// to contain target type, or if it doesn't
/// satisfy the type's alignment requirements,
/// the function returns an error.
///
/// However, the function will not fail when the
/// byte slice is longer than necessary, since it is
/// a common practice to interpret the beginning of
/// a slice as a fixed-size header.
///
/// In most cases it's preferrable to allocate
/// a value/slice of the target type and use
/// [`as_mut_bytes()`](fn.as_mut_bytes.html) to copy
/// data instead. That way, any issues with alignment
/// are implicitly avoided.
///
#[inline]
pub fn from_bytes<T>(bytes: &[u8]) -> Result<&T, Error>
    where T: Plain
{
    try!(check_instance_size::<T>(bytes));
    try!(check_alignment::<T>(bytes));
    Ok(unsafe { &*(bytes.as_ptr() as *const T) })
}

/// Similar to [`from_bytes()`](fn.from_bytes.html),
/// except that the output is a slice of T, instead
/// of a reference to a single T. All concerns about
/// alignment also apply here, but size is handled
/// differently.
///
/// The result slice's length is set to be
/// `bytes.len() / size_of::<T>()`, and there
/// are no requirements for input size. I.e.
/// the result may be empty slice, and the input
/// slice doesn't necessarily have to end on `T`'s
/// boundary. The latter has pragmatic reasons: If the
/// length of the array is not known in advance,
/// e.g. if it's terminated by a special element,
/// it's perfectly legal to turn the whole rest
/// of data into `&[T]` and set the proper length
/// after inspecting the array.
///
/// In most cases it's preferrable to allocate
/// a value/slice of the target type and use
/// [`as_mut_bytes()`](fn.as_mut_bytes.html) to copy
/// data instead. That way, any issues with alignment
/// are implicitly avoided.
///
/// ## Example
///
/// ```rust,should_panic
/// use plain::Plain;
/// let bytes = &[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 ];
/// let nums: &[u32] = u32::slice_from_bytes(bytes).unwrap();
/// // Oops! This `unwrap()` will actually panic, in some cases!
/// // The byte slice is NOT aligned! Don't write code like this!
///
/// // If the above doesn't panic, this holds:
/// assert_eq!(nums.len(), 3);
/// # assert!(false);
/// ```
#[inline]
pub fn slice_from_bytes<T>(bytes: &[u8]) -> Result<&[T], Error>
    where T: Plain
{
    let len = bytes.len() / mem::size_of::<T>();
    slice_from_bytes_len(bytes, len)
}


/// Same as [`slice_from_bytes()`](fn.slice_from_bytes.html),
/// except that it takes explicit length of the result slice.
///
/// If the input slice can't satisfy the length, returns error.
/// The input slice is allowed to be longer than necessary.
#[inline]
pub fn slice_from_bytes_len<T>(bytes: &[u8], len: usize) -> Result<&[T], Error>
    where T: Plain
{
    try!(check_alignment::<T>(bytes));
    try!(check_slice_size::<T>(bytes, len));
    Ok(unsafe { slice::from_raw_parts(bytes.as_ptr() as *const T, len) })
}

/// See [`from_bytes()`](fn.from_bytes.html).
///
/// Does the same, except with mutable references.
#[inline]
pub fn from_mut_bytes<T>(bytes: &mut [u8]) -> Result<&mut T, Error>
    where T: Plain
{
    try!(check_instance_size::<T>(bytes));
    try!(check_alignment::<T>(bytes));
    Ok(unsafe { &mut *(bytes.as_mut_ptr() as *mut T) })
}

/// See [`slice_from_bytes()`](fn.slice_from_bytes.html).
///
/// Does the same, except with mutable references.
#[inline]
pub fn slice_from_mut_bytes<T>(bytes: &mut [u8]) -> Result<&mut [T], Error>
    where T: Plain
{
    let len = bytes.len() / mem::size_of::<T>();
    slice_from_mut_bytes_len(bytes, len)
}

/// See [`slice_from_bytes_len()`](fn.slice_from_bytes_len.html).
///
/// Does the same, except with mutable references.
#[inline]
pub fn slice_from_mut_bytes_len<T>(bytes: &mut [u8], len: usize) -> Result<&mut [T], Error>
    where T: Plain
{
    try!(check_alignment::<T>(bytes));
    try!(check_slice_size::<T>(bytes, len));
    Ok(unsafe { slice::from_raw_parts_mut(bytes.as_ptr() as *mut T, len) })
}

#[cfg(test)]
mod tests;