1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
use core::f64;
use image::{
    codecs::png::PngDecoder, DynamicImage, GenericImage, GenericImageView, ImageOutputFormat, Rgba,
};
use std::io::{Read, Write};

pub struct Options {
    /// matching threshold (0 to 1); smaller is more sensitive
    pub threshold: f64,
    /// whether to skip anti-aliasing detection
    pub include_aa: bool,
    /// opacity of original image in diff output
    pub alpha: f64,
    /// color of anti-aliased pixels in diff output
    pub aa_color: [u8; 4],
    /// color of different pixels in diff output
    pub diff_color: [u8; 4],
    /// whether to detect dark on light differences between img1 and img2 and set an alternative color to differentiate between the two
    pub diff_color_alt: Option<[u8; 4]>,
    /// draw the diff over a transparent background (a mask)
    pub diff_mask: bool,
}

impl Default for Options {
    fn default() -> Self {
        Options {
            threshold: 0.1,
            include_aa: false,
            alpha: 0.1,
            aa_color: [255, 255, 0, 255],
            diff_color: [255, 0, 0, 255],
            diff_color_alt: None,
            diff_mask: false,
        }
    }
}

pub fn pixelmatch<IMG1: Read, IMG2: Read, OUT: Write>(
    img1: IMG1,
    img2: IMG2,
    mut output: Option<&mut OUT>,
    width: Option<u32>,
    height: Option<u32>,
    options: Option<Options>,
) -> Result<usize, Box<dyn std::error::Error>> {
    let img1 = DynamicImage::from_decoder(PngDecoder::new(img1)?)?;
    let img2 = DynamicImage::from_decoder(PngDecoder::new(img2)?)?;

    let img1_dimensions = img1.dimensions();
    if img1.dimensions() != img2.dimensions() {
        return Err(<Box<dyn std::error::Error>>::from(
            "Image sizes do not match.",
        ));
    }

    if let (Some(width), Some(height)) = (width, height) {
        if (width, height) != img1_dimensions {
            return Err(<Box<dyn std::error::Error>>::from(
                "Image data size does not match width/height.",
            ));
        }
    }

    let options = options.unwrap_or_default();
    let mut img_out = match output {
        Some(..) => Some(DynamicImage::new_rgba8(
            img1_dimensions.0,
            img1_dimensions.1,
        )),
        None => None,
    };

    // check if images are identical
    let mut identical = true;
    for (pixel1, pixel2) in img1.pixels().zip(img2.pixels()) {
        if pixel1 != pixel2 {
            identical = false;
            break;
        }
    }

    // fast path if identical
    if identical {
        if let (Some(output), Some(img_out)) = (&mut output, &mut img_out) {
            if !options.diff_mask {
                for pixel in img1.pixels() {
                    draw_gray_pixel(&pixel, options.alpha, img_out)?;
                }
            }

            img_out.write_to(*output, ImageOutputFormat::Png)?;
        }

        return Ok(0);
    }

    // maximum acceptable square distance between two colors;
    // 35215 is the maximum possible value for the YIQ difference metric
    let max_delta = 35215_f64 * options.threshold * options.threshold;
    let mut diff: usize = 0;

    for (pixel1, pixel2) in img1.pixels().zip(img2.pixels()) {
        let delta = color_delta(&pixel1.2, &pixel2.2, false);

        if delta.abs() > max_delta {
            // check it's a real rendering difference or just anti-aliasing
            if !options.include_aa
                && (antialiased(
                    &img1,
                    pixel1.0,
                    pixel1.1,
                    img1_dimensions.0,
                    img1_dimensions.1,
                    &img2,
                ) || antialiased(
                    &img2,
                    pixel1.0,
                    pixel1.1,
                    img1_dimensions.0,
                    img1_dimensions.1,
                    &img1,
                ))
            {
                // one of the pixels is anti-aliasing; draw as yellow and do not count as difference
                // note that we do not include such pixels in a mask
                if let (Some(img_out), false) = (&mut img_out, options.diff_mask) {
                    img_out.put_pixel(pixel1.0, pixel1.1, Rgba(options.aa_color));
                }
            } else {
                // found substantial difference not caused by anti-aliasing; draw it as such
                if let Some(img_out) = &mut img_out {
                    let color = if delta < 0.0 {
                        options.diff_color_alt.unwrap_or(options.diff_color)
                    } else {
                        options.diff_color
                    };
                    img_out.put_pixel(pixel1.0, pixel1.1, Rgba(color));
                }
                diff += 1;
            }
        } else if let (Some(img_out), false) = (&mut img_out, options.diff_mask) {
            // pixels are similar; draw background as grayscale image blended with white
            draw_gray_pixel(&pixel1, options.alpha, img_out)?;
        }
    }

    if let (Some(output), Some(img_out)) = (&mut output, &mut img_out) {
        img_out.write_to(*output, ImageOutputFormat::Png)?;
    }

    Ok(diff)
}

// check if a pixel is likely a part of anti-aliasing;
// based on "Anti-aliased Pixel and Intensity Slope Detector" paper by V. Vysniauskas, 2009
fn antialiased(
    img1: &DynamicImage,
    x: u32,
    y: u32,
    width: u32,
    height: u32,
    img2: &DynamicImage,
) -> bool {
    let mut zeroes: u8 = if x == 0 || y == 0 || x == width - 1 || y == height - 1 {
        1
    } else {
        0
    };

    let mut min = 0.0;
    let mut max = 0.0;

    let mut min_x = 0;
    let mut min_y = 0;
    let mut max_x = 0;
    let mut max_y = 0;

    let center_rgba = img1.get_pixel(x, y);

    for adjacent_x in (if x > 0 { x - 1 } else { x })..=(if x < width - 1 { x + 1 } else { x }) {
        for adjacent_y in (if y > 0 { y - 1 } else { y })..=(if y < height - 1 { y + 1 } else { y })
        {
            if adjacent_x == x && adjacent_y == y {
                continue;
            }

            // brightness delta between the center pixel and adjacent one
            let rgba = img1.get_pixel(adjacent_x, adjacent_y);
            let delta = color_delta(&center_rgba, &rgba, true);

            // count the number of equal, darker and brighter adjacent pixels
            if delta == 0.0 {
                zeroes += 1;

                // if found more than 2 equal siblings, it's definitely not anti-aliasing
                if zeroes > 2 {
                    return false;
                }

                continue;
            }

            // remember the darkest pixel
            if delta < min {
                min = delta;
                min_x = adjacent_x;
                min_y = adjacent_y;

                continue;
            }

            // remember the brightest pixel
            if delta > max {
                max = delta;
                max_x = adjacent_x;
                max_y = adjacent_y;
            }
        }
    }

    // if there are no both darker and brighter pixels among siblings, it's not anti-aliasing
    if min == 0.0 || max == 0.0 {
        return false;
    }

    // if either the darkest or the brightest pixel has 3+ equal siblings in both images
    // (definitely not anti-aliased), this pixel is anti-aliased
    (has_many_siblings(img1, min_x, min_y, width, height)
        && has_many_siblings(img2, min_x, min_y, width, height))
        || (has_many_siblings(img1, max_x, max_y, width, height)
            && has_many_siblings(img2, max_x, max_y, width, height))
}

// check if a pixel has 3+ adjacent pixels of the same color.
fn has_many_siblings(img: &DynamicImage, x: u32, y: u32, width: u32, height: u32) -> bool {
    let mut zeroes: u8 = if x == 0 || y == 0 || x == width - 1 || y == height - 1 {
        1
    } else {
        0
    };

    let center_rgba = img.get_pixel(x, y);

    for adjacent_x in (if x > 0 { x - 1 } else { x })..=(if x < width - 1 { x + 1 } else { x }) {
        for adjacent_y in (if y > 0 { y - 1 } else { y })..=(if y < height - 1 { y + 1 } else { y })
        {
            if adjacent_x == x && adjacent_y == y {
                continue;
            }

            let rgba = img.get_pixel(adjacent_x, adjacent_y);

            if center_rgba == rgba {
                zeroes += 1;
            }

            if zeroes > 2 {
                return true;
            }
        }
    }

    false
}

// calculate color difference according to the paper "Measuring perceived color difference
// using YIQ NTSC transmission color space in mobile applications" by Y. Kotsarenko and F. Ramos
fn color_delta(rgba1: &Rgba<u8>, rgba2: &Rgba<u8>, y_only: bool) -> f64 {
    let mut r1 = rgba1[0] as f64;
    let mut g1 = rgba1[1] as f64;
    let mut b1 = rgba1[2] as f64;
    let mut a1 = rgba1[3] as f64;

    let mut r2 = rgba2[0] as f64;
    let mut g2 = rgba2[1] as f64;
    let mut b2 = rgba2[2] as f64;
    let mut a2 = rgba2[3] as f64;

    if (a1 - a2).abs() < f64::EPSILON
        && (r1 - r2).abs() < f64::EPSILON
        && (g1 - g2).abs() < f64::EPSILON
        && (b1 - b2).abs() < f64::EPSILON
    {
        return 0.0;
    }

    if a1 < 255.0 {
        a1 /= 255.0;
        r1 = blend(r1, a1);
        g1 = blend(g1, a1);
        b1 = blend(b1, a1);
    }

    if a2 < 255.0 {
        a2 /= 255.0;
        r2 = blend(r2, a2);
        g2 = blend(g2, a2);
        b2 = blend(b2, a2);
    }

    let y1 = rgb2y(r1, g1, b1);
    let y2 = rgb2y(r2, g2, b2);
    let y = y1 - y2;

    // brightness difference only
    if y_only {
        return y;
    }

    let i = rgb2i(r1, g1, b1) - rgb2i(r2, g2, b2);
    let q = rgb2q(r1, g1, b1) - rgb2q(r2, g2, b2);

    let delta = 0.5053 * y * y + 0.299 * i * i + 0.1957 * q * q;

    // encode whether the pixel lightens or darkens in the sign
    if y1 > y2 {
        -delta
    } else {
        delta
    }
}

fn draw_gray_pixel(
    (x, y, rgba): &(u32, u32, Rgba<u8>),
    alpha: f64,
    output: &mut DynamicImage,
) -> Result<(), Box<dyn std::error::Error>> {
    if !output.in_bounds(*x, *y) {
        return Err(<Box<dyn std::error::Error>>::from(
            "Pixel is not in bounds of output.",
        ));
    }

    let val = blend(
        rgb2y(rgba[0], rgba[1], rgba[2]),
        (alpha * rgba[3] as f64) / 255.0,
    ) as u8;
    let gray_rgba = Rgba([val, val, val, val]);
    output.put_pixel(*x, *y, gray_rgba);

    Ok(())
}

// blend semi-transparent color with white
fn blend<T: Into<f64>>(c: T, a: T) -> f64 {
    255.0 + (c.into() - 255.0) * a.into()
}

fn rgb2y<T: Into<f64>>(r: T, g: T, b: T) -> f64 {
    r.into() * 0.29889531 + g.into() * 0.58662247 + b.into() * 0.11448223
}
fn rgb2i<T: Into<f64>>(r: T, g: T, b: T) -> f64 {
    r.into() * 0.59597799 - g.into() * 0.27417610 - b.into() * 0.32180189
}
fn rgb2q<T: Into<f64>>(r: T, g: T, b: T) -> f64 {
    r.into() * 0.21147017 - g.into() * 0.52261711 + b.into() * 0.31114694
}