1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
use std::cell::UnsafeCell;
use std::fmt;
use std::io::{IoSlice, IoSliceMut};
use std::ops::{Deref, DerefMut};
use std::pin::Pin;
use std::sync::atomic::{AtomicBool, Ordering};
use std::task::{Context, Poll};

use crate::event::Event;

use crossbeam_utils::Backoff;
use futures_io::{self as io, AsyncRead, AsyncWrite};

/// A mutex that implements async I/O traits.
///
/// This is a blocking mutex that adds the following impls:
///
/// - `impl<T> AsyncRead for Mutex<T> where &T: AsyncRead + Unpin {}`
/// - `impl<T> AsyncRead for &Mutex<T> where &T: AsyncRead + Unpin {}`
/// - `impl<T> AsyncWrite for Mutex<T> where &T: AsyncWrite + Unpin {}`
/// - `impl<T> AsyncWrite for &Mutex<T> where &T: AsyncWrite + Unpin {}`
///
/// This mutex is ensures fairness by handling lock operations in the first-in first-out order.
///
/// While primarily designed for wrapping async I/O objects, this mutex can also be used as a
/// regular blocking mutex. It's not quite as efficient as [`parking_lot::Mutex`], but it's still
/// an improvement over [`std::sync::Mutex`].
///
/// [`parking_lot::Mutex`]: https://docs.rs/parking_lot/0.10.0/parking_lot/type.Mutex.html
/// [`std::sync::Mutex`]: https://doc.rust-lang.org/std/sync/struct.Mutex.html
///
/// # Examples
///
/// ```
/// use futures::io;
/// use futures::prelude::*;
/// use piper::Mutex;
///
/// // Reads data from a stream and echoes it back.
/// async fn echo(stream: impl AsyncRead + AsyncWrite + Unpin) -> io::Result<u64> {
///     let stream = Mutex::new(stream);
///     io::copy(&stream, &mut &stream).await
/// }
/// ```
pub struct Mutex<T> {
    /// Set to `true` when the mutex is acquired by a [`MutexGuard`].
    locked: AtomicBool,

    /// Lock operations waiting for the mutex to get unlocked.
    lock_ops: Event,

    /// The value inside the mutex.
    data: UnsafeCell<T>,
}

unsafe impl<T: Send> Send for Mutex<T> {}
unsafe impl<T: Send> Sync for Mutex<T> {}

impl<T> Mutex<T> {
    /// Creates a new mutex.
    ///
    /// # Examples
    ///
    /// ```
    /// use piper::Mutex;
    ///
    /// let mutex = Mutex::new(10);
    /// ```
    pub fn new(data: T) -> Mutex<T> {
        Mutex {
            locked: AtomicBool::new(false),
            lock_ops: Event::new(),
            data: UnsafeCell::new(data),
        }
    }

    /// Acquires the mutex, blocking the current thread until it is able to do so.
    ///
    /// Returns a guard that releases the mutex when dropped.
    ///
    /// # Examples
    ///
    /// ```
    /// use piper::Mutex;
    ///
    /// let mutex = Mutex::new(10);
    /// let guard = mutex.lock();
    /// assert_eq!(*guard, 10);
    /// ```
    pub fn lock(&self) -> MutexGuard<'_, T> {
        loop {
            // Try locking the mutex.
            let backoff = Backoff::new();
            loop {
                if let Some(guard) = self.try_lock() {
                    return guard;
                }
                if backoff.is_completed() {
                    break;
                }
                backoff.snooze();
            }

            // Start watching for notifications and try locking again.
            let l = self.lock_ops.listen();
            if let Some(guard) = self.try_lock() {
                return guard;
            }
            l.wait();
        }
    }

    /// Attempts to acquire the mutex.
    ///
    /// If the mutex could not be acquired at this time, then [`None`] is returned. Otherwise, a
    /// guard is returned that releases the mutex when dropped.
    ///
    /// [`None`]: https://doc.rust-lang.org/std/option/enum.Option.html#variant.None
    ///
    /// # Examples
    ///
    /// ```
    /// use piper::Mutex;
    ///
    /// let mutex = Mutex::new(10);
    /// if let Ok(guard) = mutex.try_lock() {
    ///     assert_eq!(*guard, 10);
    /// }
    /// # ;
    /// ```
    #[inline]
    pub fn try_lock(&self) -> Option<MutexGuard<'_, T>> {
        if !self.locked.compare_and_swap(false, true, Ordering::Acquire) {
            Some(MutexGuard(self))
        } else {
            None
        }
    }

    /// Consumes the mutex, returning the underlying data.
    ///
    /// # Examples
    ///
    /// ```
    /// use piper::Mutex;
    ///
    /// let mutex = Mutex::new(10);
    /// assert_eq!(mutex.into_inner(), 10);
    /// ```
    pub fn into_inner(self) -> T {
        self.data.into_inner()
    }

    /// Returns a mutable reference to the underlying data.
    ///
    /// Since this call borrows the mutex mutably, no actual locking takes place -- the mutable
    /// borrow statically guarantees the mutex is not already acquired.
    ///
    /// # Examples
    ///
    /// ```
    /// use piper::Mutex;
    ///
    /// let mut mutex = Mutex::new(0);
    /// *mutex.get_mut() = 10;
    /// assert_eq!(*mutex.lock(), 10);
    /// ```
    pub fn get_mut(&mut self) -> &mut T {
        unsafe { &mut *self.data.get() }
    }
}

impl<T: fmt::Debug> fmt::Debug for Mutex<T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        struct Locked;
        impl fmt::Debug for Locked {
            fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
                f.write_str("<locked>")
            }
        }

        match self.try_lock() {
            None => f.debug_struct("Mutex").field("data", &Locked).finish(),
            Some(guard) => f.debug_struct("Mutex").field("data", &&*guard).finish(),
        }
    }
}

impl<T> From<T> for Mutex<T> {
    fn from(val: T) -> Mutex<T> {
        Mutex::new(val)
    }
}

impl<T: Default> Default for Mutex<T> {
    fn default() -> Mutex<T> {
        Mutex::new(Default::default())
    }
}

impl<T: AsyncRead + Unpin> AsyncRead for Mutex<T> {
    fn poll_read(
        self: Pin<&mut Self>,
        cx: &mut Context<'_>,
        buf: &mut [u8],
    ) -> Poll<io::Result<usize>> {
        Pin::new(&mut *self.lock()).poll_read(cx, buf)
    }

    fn poll_read_vectored(
        self: Pin<&mut Self>,
        cx: &mut Context<'_>,
        bufs: &mut [IoSliceMut<'_>],
    ) -> Poll<io::Result<usize>> {
        Pin::new(&mut *self.lock()).poll_read_vectored(cx, bufs)
    }
}

impl<T: AsyncRead + Unpin> AsyncRead for &Mutex<T> {
    fn poll_read(
        self: Pin<&mut Self>,
        cx: &mut Context<'_>,
        buf: &mut [u8],
    ) -> Poll<io::Result<usize>> {
        Pin::new(&mut *self.lock()).poll_read(cx, buf)
    }

    fn poll_read_vectored(
        self: Pin<&mut Self>,
        cx: &mut Context<'_>,
        bufs: &mut [IoSliceMut<'_>],
    ) -> Poll<io::Result<usize>> {
        Pin::new(&mut *self.lock()).poll_read_vectored(cx, bufs)
    }
}

impl<T: AsyncWrite + Unpin> AsyncWrite for Mutex<T> {
    fn poll_write(
        self: Pin<&mut Self>,
        cx: &mut Context<'_>,
        buf: &[u8],
    ) -> Poll<io::Result<usize>> {
        Pin::new(&mut *self.lock()).poll_write(cx, buf)
    }

    fn poll_write_vectored(
        self: Pin<&mut Self>,
        cx: &mut Context<'_>,
        bufs: &[IoSlice<'_>],
    ) -> Poll<io::Result<usize>> {
        Pin::new(&mut *self.lock()).poll_write_vectored(cx, bufs)
    }

    fn poll_flush(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<io::Result<()>> {
        Pin::new(&mut *self.lock()).poll_flush(cx)
    }

    fn poll_close(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<io::Result<()>> {
        Pin::new(&mut *self.lock()).poll_close(cx)
    }
}

impl<T: AsyncWrite + Unpin> AsyncWrite for &Mutex<T> {
    fn poll_write(
        self: Pin<&mut Self>,
        cx: &mut Context<'_>,
        buf: &[u8],
    ) -> Poll<io::Result<usize>> {
        Pin::new(&mut *self.lock()).poll_write(cx, buf)
    }

    fn poll_write_vectored(
        self: Pin<&mut Self>,
        cx: &mut Context<'_>,
        bufs: &[IoSlice<'_>],
    ) -> Poll<io::Result<usize>> {
        Pin::new(&mut *self.lock()).poll_write_vectored(cx, bufs)
    }

    fn poll_flush(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<io::Result<()>> {
        Pin::new(&mut *self.lock()).poll_flush(cx)
    }

    fn poll_close(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<io::Result<()>> {
        Pin::new(&mut *self.lock()).poll_close(cx)
    }
}

/// A guard that releases the mutex when dropped.
pub struct MutexGuard<'a, T>(&'a Mutex<T>);

unsafe impl<T: Send> Send for MutexGuard<'_, T> {}
unsafe impl<T: Sync> Sync for MutexGuard<'_, T> {}

impl<T> Drop for MutexGuard<'_, T> {
    fn drop(&mut self) {
        self.0.locked.store(false, Ordering::Release);
        self.0.lock_ops.notify_one();
    }
}

impl<T: fmt::Debug> fmt::Debug for MutexGuard<'_, T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        fmt::Debug::fmt(&**self, f)
    }
}

impl<T: fmt::Display> fmt::Display for MutexGuard<'_, T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        (**self).fmt(f)
    }
}

impl<T> Deref for MutexGuard<'_, T> {
    type Target = T;

    fn deref(&self) -> &T {
        unsafe { &*self.0.data.get() }
    }
}

impl<T> DerefMut for MutexGuard<'_, T> {
    fn deref_mut(&mut self) -> &mut T {
        unsafe { &mut *self.0.data.get() }
    }
}