1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
//! A simple representation of color

use std::fmt::{Debug, Formatter};

/// A datatype representing color.
///
/// Currently this is only a 32 bit RGBA value, but it will likely
/// extend to some form of wide-gamut colorspace, and in the meantime
/// is useful for giving programs proper type.
#[derive(Clone, Copy, PartialEq, Eq, Hash)]
#[non_exhaustive]
pub enum Color {
    #[doc(hidden)]
    Rgba32(u32),
}

/// Errors that can occur when parsing a hex color.
#[derive(Debug, Clone, PartialEq, Eq)]
pub enum ColorParseError {
    /// The input string has an incorrect length
    WrongSize(usize),
    /// A byte in the input string is not in one of the ranges `0..=9`,
    /// `a..=f`, or `A..=F`.
    #[allow(missing_docs)]
    NotHex { idx: usize, byte: u8 },
}

impl Color {
    /// Create a color from 8 bit per sample RGB values.
    pub const fn rgb8(r: u8, g: u8, b: u8) -> Color {
        Color::from_rgba32_u32(((r as u32) << 24) | ((g as u32) << 16) | ((b as u32) << 8) | 0xff)
    }

    /// Create a color from 8 bit per sample RGBA values.
    pub const fn rgba8(r: u8, g: u8, b: u8, a: u8) -> Color {
        Color::from_rgba32_u32(
            ((r as u32) << 24) | ((g as u32) << 16) | ((b as u32) << 8) | (a as u32),
        )
    }

    /// Create a color from a 32-bit rgba value (alpha as least significant byte).
    pub const fn from_rgba32_u32(rgba: u32) -> Color {
        Color::Rgba32(rgba)
    }

    /// Attempt to create a color from a CSS-style hex string.
    ///
    /// This will accept strings in the following formats, *with or without*
    /// the leading `#`:
    ///
    /// - `rrggbb`
    /// - `rrggbbaa`
    /// - `rbg`
    /// - `rbga`
    ///
    /// This method returns a [`ColorParseError`] if the color cannot be parsed.
    pub const fn from_hex_str(hex: &str) -> Result<Color, ColorParseError> {
        // can't use `map()` in a const function
        match get_4bit_hex_channels(hex) {
            Ok(channels) => Ok(color_from_4bit_hex(channels)),
            Err(e) => Err(e),
        }
    }

    /// Create a color from a grey value.
    ///
    /// ```
    /// use piet::Color;
    ///
    /// let grey_val = 0x55;
    ///
    /// let one = Color::grey8(grey_val);
    /// // is shorthand for
    /// let two = Color::rgb8(grey_val, grey_val, grey_val);
    ///
    /// assert_eq!(one.as_rgba_u32(), two.as_rgba_u32());
    /// ```
    pub const fn grey8(grey: u8) -> Color {
        Color::rgb8(grey, grey, grey)
    }

    /// Create a color with a grey value in the range 0.0..=1.0.
    pub fn grey(grey: f64) -> Color {
        Color::rgb(grey, grey, grey)
    }

    /// Create a color from four floating point values, each in the range 0.0 to 1.0.
    ///
    /// The interpretation is the same as rgba32, and no greater precision is
    /// (currently) assumed.
    pub fn rgba(r: f64, g: f64, b: f64, a: f64) -> Color {
        let r = (r.clamp(0.0, 1.0) * 255.0).round() as u32;
        let g = (g.clamp(0.0, 1.0) * 255.0).round() as u32;
        let b = (b.clamp(0.0, 1.0) * 255.0).round() as u32;
        let a = (a.clamp(0.0, 1.0) * 255.0).round() as u32;
        Color::from_rgba32_u32((r << 24) | (g << 16) | (b << 8) | a)
    }

    /// Create a color from three floating point values, each in the range 0.0 to 1.0.
    ///
    /// The interpretation is the same as rgb8, and no greater precision is
    /// (currently) assumed.
    pub fn rgb(r: f64, g: f64, b: f64) -> Color {
        let r = (r.clamp(0.0, 1.0) * 255.0).round() as u32;
        let g = (g.clamp(0.0, 1.0) * 255.0).round() as u32;
        let b = (b.clamp(0.0, 1.0) * 255.0).round() as u32;
        Color::from_rgba32_u32((r << 24) | (g << 16) | (b << 8) | 0xff)
    }

    /// Create a color from a CIEL\*a\*b\* polar (also known as CIE HCL)
    /// specification.
    ///
    /// The `h` parameter is an angle in degrees, with 0 roughly magenta, 90
    /// roughly yellow, 180 roughly cyan, and 270 roughly blue. The `l`
    /// parameter is perceptual luminance, with 0 black and 100 white.
    /// The `c` parameter is a chrominance concentration, with 0 grayscale
    /// and a nominal maximum of 127 (in the future, higher values might
    /// be useful, for high gamut contexts).
    ///
    /// Currently this is just converted into sRGB, but in the future as we
    /// support high-gamut colorspaces, it can be used to specify more colors
    /// or existing colors with a higher accuracy.
    ///
    /// Currently out-of-gamut values are clipped to the nearest sRGB color,
    /// which is perhaps not ideal (the clipping might change the hue). See
    /// <https://github.com/d3/d3-color/issues/33> for discussion.
    #[allow(non_snake_case)]
    #[allow(clippy::many_single_char_names)]
    #[allow(clippy::unreadable_literal)]
    pub fn hlc(h: f64, L: f64, c: f64) -> Color {
        // The reverse transformation from Lab to XYZ, see
        // https://en.wikipedia.org/wiki/CIELAB_color_space
        fn f_inv(t: f64) -> f64 {
            let d = 6. / 29.;
            if t > d {
                t.powi(3)
            } else {
                3. * d * d * (t - 4. / 29.)
            }
        }
        let th = h * (std::f64::consts::PI / 180.);
        let a = c * th.cos();
        let b = c * th.sin();
        let ll = (L + 16.) * (1. / 116.);
        // Produce raw XYZ values
        let X = f_inv(ll + a * (1. / 500.));
        let Y = f_inv(ll);
        let Z = f_inv(ll - b * (1. / 200.));
        // This matrix is the concatenation of three sources.
        // First, the white point is taken to be ICC standard D50, so
        // the diagonal matrix of [0.9642, 1, 0.8249]. Note that there
        // is some controversy around this value. However, it matches
        // the other matrices, thus minimizing chroma error.
        //
        // Second, an adaption matrix from D50 to D65. This is the
        // inverse of the recommended D50 to D65 adaptation matrix
        // from the W3C sRGB spec:
        // https://www.w3.org/Graphics/Color/srgb
        //
        // Finally, the conversion from XYZ to linear sRGB values,
        // also taken from the W3C sRGB spec.
        let r_lin = 3.02172918 * X - 1.61692294 * Y - 0.40480625 * Z;
        let g_lin = -0.94339358 * X + 1.91584267 * Y + 0.02755094 * Z;
        let b_lin = 0.06945666 * X - 0.22903204 * Y + 1.15957526 * Z;
        fn gamma(u: f64) -> f64 {
            if u <= 0.0031308 {
                12.92 * u
            } else {
                1.055 * u.powf(1. / 2.4) - 0.055
            }
        }
        Color::rgb(gamma(r_lin), gamma(g_lin), gamma(b_lin))
    }

    /// Create a color from a CIEL\*a\*b\* polar specification and alpha.
    ///
    /// The `a` value represents alpha in the range 0.0 to 1.0.
    pub fn hlca(h: f64, l: f64, c: f64, a: f64) -> Color {
        Color::hlc(h, c, l).with_alpha(a)
    }

    /// Change just the alpha value of a color.
    ///
    /// The `a` value represents alpha in the range 0.0 to 1.0.
    pub fn with_alpha(self, a: f64) -> Color {
        let a = (a.clamp(0.0, 1.0) * 255.0).round() as u32;
        Color::from_rgba32_u32((self.as_rgba_u32() & !0xff) | a)
    }

    /// Convert a color value to a 32-bit rgba value.
    pub fn as_rgba_u32(self) -> u32 {
        match self {
            Color::Rgba32(rgba) => rgba,
        }
    }

    /// Convert a color value to four 8-bit rgba values.
    pub fn as_rgba8(self) -> (u8, u8, u8, u8) {
        let rgba = self.as_rgba_u32();
        (
            (rgba >> 24 & 255) as u8,
            ((rgba >> 16) & 255) as u8,
            ((rgba >> 8) & 255) as u8,
            (rgba & 255) as u8,
        )
    }

    /// Convert a color value to four f64 values, each in the range 0.0 to 1.0.
    pub fn as_rgba(self) -> (f64, f64, f64, f64) {
        let rgba = self.as_rgba_u32();
        (
            (rgba >> 24) as f64 / 255.0,
            ((rgba >> 16) & 255) as f64 / 255.0,
            ((rgba >> 8) & 255) as f64 / 255.0,
            (rgba & 255) as f64 / 255.0,
        )
    }

    // basic css3 colors (not including shades for now)

    /// Opaque aqua (or cyan).
    pub const AQUA: Color = Color::rgb8(0, 255, 255);

    /// Opaque black.
    pub const BLACK: Color = Color::rgb8(0, 0, 0);

    /// Opaque blue.
    pub const BLUE: Color = Color::rgb8(0, 0, 255);

    /// Opaque fuchsia (or magenta).
    pub const FUCHSIA: Color = Color::rgb8(255, 0, 255);

    /// Opaque gray.
    pub const GRAY: Color = Color::grey8(128);

    /// Opaque green.
    pub const GREEN: Color = Color::rgb8(0, 128, 0);

    /// Opaque lime.
    pub const LIME: Color = Color::rgb8(0, 255, 0);

    /// Opaque maroon.
    pub const MAROON: Color = Color::rgb8(128, 0, 0);

    /// Opaque navy.
    pub const NAVY: Color = Color::rgb8(0, 0, 128);

    /// Opaque olive.
    pub const OLIVE: Color = Color::rgb8(128, 128, 0);

    /// Opaque purple.
    pub const PURPLE: Color = Color::rgb8(128, 0, 128);

    /// Opaque red.
    pub const RED: Color = Color::rgb8(255, 0, 0);

    /// Opaque silver.
    pub const SILVER: Color = Color::grey8(192);

    /// Opaque teal.
    pub const TEAL: Color = Color::rgb8(0, 128, 128);

    /// Fully transparent
    pub const TRANSPARENT: Color = Color::rgba8(0, 0, 0, 0);

    /// Opaque white.
    pub const WHITE: Color = Color::grey8(255);

    /// Opaque yellow.
    pub const YELLOW: Color = Color::rgb8(255, 255, 0);
}

const fn get_4bit_hex_channels(hex_str: &str) -> Result<[u8; 8], ColorParseError> {
    let mut four_bit_channels = match hex_str.as_bytes() {
        &[b'#', r, g, b] | &[r, g, b] => [r, r, g, g, b, b, b'f', b'f'],
        &[b'#', r, g, b, a] | &[r, g, b, a] => [r, r, g, g, b, b, a, a],
        &[b'#', r0, r1, g0, g1, b0, b1] | &[r0, r1, g0, g1, b0, b1] => {
            [r0, r1, g0, g1, b0, b1, b'f', b'f']
        }
        &[b'#', r0, r1, g0, g1, b0, b1, a0, a1] | &[r0, r1, g0, g1, b0, b1, a0, a1] => {
            [r0, r1, g0, g1, b0, b1, a0, a1]
        }
        other => return Err(ColorParseError::WrongSize(other.len())),
    };

    // convert to hex in-place
    // this is written without a for loop to satisfy `const`
    let mut i = 0;
    while i < four_bit_channels.len() {
        let ascii = four_bit_channels[i];
        let as_hex = match hex_from_ascii_byte(ascii) {
            Ok(hex) => hex,
            Err(byte) => return Err(ColorParseError::NotHex { idx: i, byte }),
        };
        four_bit_channels[i] = as_hex;
        i += 1;
    }
    Ok(four_bit_channels)
}

const fn color_from_4bit_hex(components: [u8; 8]) -> Color {
    let [r0, r1, g0, g1, b0, b1, a0, a1] = components;
    Color::rgba8(r0 << 4 | r1, g0 << 4 | g1, b0 << 4 | b1, a0 << 4 | a1)
}

const fn hex_from_ascii_byte(b: u8) -> Result<u8, u8> {
    match b {
        b'0'..=b'9' => Ok(b - b'0'),
        b'A'..=b'F' => Ok(b - b'A' + 10),
        b'a'..=b'f' => Ok(b - b'a' + 10),
        _ => Err(b),
    }
}

impl Debug for Color {
    fn fmt(&self, f: &mut Formatter) -> std::fmt::Result {
        write!(f, "#{:08x}", self.as_rgba_u32())
    }
}

impl std::fmt::Display for ColorParseError {
    fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
        match self {
            ColorParseError::WrongSize(n) => write!(f, "Input string has invalid length {n}"),
            ColorParseError::NotHex { idx, byte } => {
                write!(f, "byte {byte:X} at index {idx} is not valid hex digit")
            }
        }
    }
}

impl std::error::Error for ColorParseError {}
#[cfg(test)]
mod tests {
    use super::*;
    #[test]
    fn color_from_hex() {
        assert_eq!(Color::from_hex_str("#BAD"), Color::from_hex_str("BBAADD"));
        assert_eq!(
            Color::from_hex_str("#BAD"),
            Ok(Color::from_rgba32_u32(0xBBAADDFF))
        );
        assert_eq!(Color::from_hex_str("BAD"), Color::from_hex_str("BBAADD"));
        assert_eq!(Color::from_hex_str("#BADF"), Color::from_hex_str("BAD"));
        assert_eq!(Color::from_hex_str("#BBAADDFF"), Color::from_hex_str("BAD"));
        assert_eq!(Color::from_hex_str("BBAADDFF"), Color::from_hex_str("BAD"));
        assert_eq!(Color::from_hex_str("bBAadDfF"), Color::from_hex_str("BAD"));
        assert_eq!(Color::from_hex_str("#0f6"), Ok(Color::rgb8(0, 0xff, 0x66)));
        assert_eq!(
            Color::from_hex_str("#0f6a"),
            Ok(Color::rgba8(0, 0xff, 0x66, 0xaa))
        );
        assert!(Color::from_hex_str("#0f6aa").is_err());
        assert!(Color::from_hex_str("#0f").is_err());
        assert!(Color::from_hex_str("x0f").is_err());
        assert!(Color::from_hex_str("#0afa1").is_err());
    }
}