1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
//! The main render context trait.

use std::borrow::Cow;

use kurbo::{Affine, Point, Rect, Shape};

use crate::{
    Color, Error, FixedGradient, FixedLinearGradient, FixedRadialGradient, LinearGradient,
    RadialGradient, StrokeStyle, Text, TextLayout,
};

/// A requested interpolation mode for drawing images.
#[derive(Clone, Copy, PartialEq)]
pub enum InterpolationMode {
    /// Don't interpolate, use nearest neighbor.
    NearestNeighbor,
    /// Use bilinear interpolation.
    Bilinear,
}

/// The pixel format for bitmap images.
#[derive(Clone, Copy, Debug, PartialEq)]
pub enum ImageFormat {
    /// 3 bytes per pixel, in RGB order.
    Rgb,
    /// 4 bytes per pixel, in RGBA order, with separate alpha.
    RgbaSeparate,
    /// 4 bytes per pixel, in RGBA order, with premultiplied alpha.
    RgbaPremul,
    /// More formats may be added later.
    #[doc(hidden)]
    _NonExhaustive,
}

impl ImageFormat {
    pub fn bytes_per_pixel(self) -> usize {
        match self {
            ImageFormat::Rgb => 3,
            ImageFormat::RgbaPremul | ImageFormat::RgbaSeparate => 4,
            _ => panic!(),
        }
    }
}

/// The main trait for rendering graphics.
///
/// This trait provides an API for drawing 2D graphics. In basic usage, it
/// wraps a surface of some kind, so that drawing commands paint onto the
/// surface. It can also be a recording context, creating a display list for
/// playback later.
///
/// The intent of the design is to be general so that any number of back-ends
/// can implement this trait.
///
/// Code that draws graphics will in general take `&mut impl RenderContext`.
pub trait RenderContext
where
    Self::Brush: IntoBrush<Self>,
{
    /// The type of a "brush".
    ///
    /// Represents solid colors and gradients.
    type Brush: Clone;

    /// An associated factory for creating text layouts and related resources.
    type Text: Text<TextLayout = Self::TextLayout>;
    type TextLayout: TextLayout;

    /// The associated type of an image.
    type Image;

    /// Report an internal error.
    ///
    /// Drawing operations may cause internal errors, which may also occur
    /// asynchronously after the drawing command was issued. This method reports
    /// any such error that has been detected.
    fn status(&mut self) -> Result<(), Error>;

    /// Create a new brush resource.
    ///
    /// TODO: figure out how to document lifetime and rebuilding requirements. Should
    /// that be the responsibility of the client, or should the back-end take
    /// responsibility? We could have a cache that is flushed when the Direct2D
    /// render target is rebuilt. Solid brushes are super lightweight, but
    /// other potentially retained objects will be heavier.
    fn solid_brush(&mut self, color: Color) -> Self::Brush;

    /// Create a new gradient brush.
    fn gradient(&mut self, gradient: impl Into<FixedGradient>) -> Result<Self::Brush, Error>;

    /// Clear the canvas with the given color.
    ///
    /// Note: only opaque colors are meaningful.
    fn clear(&mut self, color: Color);

    /// Stroke a shape.
    fn stroke(&mut self, shape: impl Shape, brush: &impl IntoBrush<Self>, width: f64);

    /// Stroke a shape, with styled strokes.
    fn stroke_styled(
        &mut self,
        shape: impl Shape,
        brush: &impl IntoBrush<Self>,
        width: f64,
        style: &StrokeStyle,
    );

    /// Fill a shape, using non-zero fill rule.
    fn fill(&mut self, shape: impl Shape, brush: &impl IntoBrush<Self>);

    /// Fill a shape, using even-odd fill rule
    fn fill_even_odd(&mut self, shape: impl Shape, brush: &impl IntoBrush<Self>);

    /// Clip to a shape.
    ///
    /// All subsequent drawing operations up to the next [`restore`](#method.restore)
    /// are clipped by the shape.
    fn clip(&mut self, shape: impl Shape);

    fn text(&mut self) -> &mut Self::Text;

    /// Draw a text layout.
    ///
    /// The `pos` parameter specifies the baseline of the left starting place of
    /// the text. Note: this is true even if the text is right-to-left.
    fn draw_text(
        &mut self,
        layout: &Self::TextLayout,
        pos: impl Into<Point>,
        brush: &impl IntoBrush<Self>,
    );

    /// Save the context state.
    ///
    /// Pushes the current context state onto a stack, to be popped by
    /// [`restore`](#method.restore).
    ///
    /// Prefer [`with_save`](#method.with_save) if possible, as that statically
    /// enforces balance of save/restore pairs.
    ///
    /// The context state currently consists of a clip region and an affine
    /// transform, but is expected to grow in the near future.
    fn save(&mut self) -> Result<(), Error>;

    /// Restore the context state.
    ///
    /// Pop a context state that was pushed by [`save`](#method.save). See
    /// that method for details.
    fn restore(&mut self) -> Result<(), Error>;

    /// Do graphics operations with the context state saved and then restored.
    ///
    /// Equivalent to [`save`](#method.save), calling `f`, then
    /// [`restore`](#method.restore). See those methods for more details.
    fn with_save(&mut self, f: impl FnOnce(&mut Self) -> Result<(), Error>) -> Result<(), Error> {
        self.save()?;
        // Always try to restore the stack, even if `f` errored.
        f(self).and(self.restore())
    }

    /// Finish any pending operations.
    ///
    /// This will generally be called by a shell after all user drawing
    /// operations but before presenting. Not all back-ends will handle this
    /// the same way.
    fn finish(&mut self) -> Result<(), Error>;

    /// Apply a transform.
    ///
    /// Apply an affine transformation. The transformation remains in effect
    /// until a [`restore`](#method.restore) operation.
    fn transform(&mut self, transform: Affine);

    /// Create a new image from a pixel buffer.
    fn make_image(
        &mut self,
        width: usize,
        height: usize,
        buf: &[u8],
        format: ImageFormat,
    ) -> Result<Self::Image, Error>;

    /// Draw an image.
    ///
    /// The `image` is scaled to the provided `dst_rect`.
    /// It will be squashed if the aspect ratios don't match.
    fn draw_image(
        &mut self,
        image: &Self::Image,
        dst_rect: impl Into<Rect>,
        interp: InterpolationMode,
    );

    /// Draw a specified area of an image.
    ///
    /// The `src_rect` area of `image` is scaled to the provided `dst_rect`.
    /// It will be squashed if the aspect ratios don't match.
    fn draw_image_area(
        &mut self,
        image: &Self::Image,
        src_rect: impl Into<Rect>,
        dst_rect: impl Into<Rect>,
        interp: InterpolationMode,
    );

    /// Draw a rectangle with Gaussian blur.
    ///
    /// The blur radius is sometimes referred to as the "standard deviation" of
    /// the blur.
    fn blurred_rect(&mut self, rect: Rect, blur_radius: f64, brush: &impl IntoBrush<Self>);

    /// Returns the transformations currently applied to the context.
    fn current_transform(&self) -> Affine;
}

/// A trait for various types that can be used as brushes. These include
/// backend-independent types such `Color` and `LinearGradient`, as well
/// as the types used to represent these on a specific backend.
///
/// This is an internal trait that you should not have to implement or think about.
pub trait IntoBrush<P: RenderContext>
where
    P: ?Sized,
{
    fn make_brush<'a>(&'a self, piet: &mut P, bbox: impl FnOnce() -> Rect) -> Cow<'a, P::Brush>;
}

impl<P: RenderContext> IntoBrush<P> for Color {
    fn make_brush<'a>(&'a self, piet: &mut P, _bbox: impl FnOnce() -> Rect) -> Cow<'a, P::Brush> {
        Cow::Owned(piet.solid_brush(self.to_owned()))
    }
}

/// A color or a gradient.
///
/// This type is provided as a convenience, so that library consumers can
/// easily write methods and types that use or reference *something* that can
/// be used as a brush, without needing to know what it is.
///
/// # Examples
///
/// ```no_run
/// use piet::{Color, PaintBrush, RadialGradient};
/// use piet::kurbo::Rect;
///
/// struct Widget {
/// frame: Rect,
/// background: PaintBrush,
/// }
///
/// fn make_widget<T: Into<PaintBrush>>(frame: Rect, bg: T) -> Widget {
///     Widget {
///         frame,
///         background: bg.into(),
///     }
/// }
///
/// let color_widget = make_widget(Rect::ZERO, Color::BLACK);
/// let rad_grad = RadialGradient::new(0.8, (Color::WHITE, Color::BLACK));
/// let gradient_widget = make_widget(Rect::ZERO, rad_grad);
///
/// ```
#[derive(Debug, Clone)]
pub enum PaintBrush {
    Color(Color),
    Linear(LinearGradient),
    Radial(RadialGradient),
    Fixed(FixedGradient),
}

impl<P: RenderContext> IntoBrush<P> for PaintBrush {
    fn make_brush<'a>(&'a self, piet: &mut P, bbox: impl FnOnce() -> Rect) -> Cow<'a, P::Brush> {
        match self {
            PaintBrush::Color(color) => color.make_brush(piet, bbox),
            PaintBrush::Linear(linear) => linear.make_brush(piet, bbox),
            PaintBrush::Radial(radial) => radial.make_brush(piet, bbox),
            PaintBrush::Fixed(fixed) => fixed.make_brush(piet, bbox),
        }
    }
}

impl From<Color> for PaintBrush {
    fn from(src: Color) -> PaintBrush {
        PaintBrush::Color(src)
    }
}

impl From<LinearGradient> for PaintBrush {
    fn from(src: LinearGradient) -> PaintBrush {
        PaintBrush::Linear(src)
    }
}

impl From<RadialGradient> for PaintBrush {
    fn from(src: RadialGradient) -> PaintBrush {
        PaintBrush::Radial(src)
    }
}

impl From<FixedGradient> for PaintBrush {
    fn from(src: FixedGradient) -> PaintBrush {
        PaintBrush::Fixed(src)
    }
}

impl From<FixedLinearGradient> for PaintBrush {
    fn from(src: FixedLinearGradient) -> PaintBrush {
        PaintBrush::Fixed(src.into())
    }
}

impl From<FixedRadialGradient> for PaintBrush {
    fn from(src: FixedRadialGradient) -> PaintBrush {
        PaintBrush::Fixed(src.into())
    }
}