1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
//! A simple representation of color

use std::fmt::{Debug, Formatter};

/// A datatype representing color.
///
/// Currently this is only a 32 bit RGBA value, but it will likely
/// extend to some form of wide-gamut colorspace, and in the meantime
/// is useful for giving programs proper type.
#[derive(Clone)]
pub enum Color {
    Rgba32(u32),
}

impl Debug for Color {
    fn fmt(&self, f: &mut Formatter) -> std::fmt::Result {
        write!(f, "#{:08x}", self.as_rgba_u32())
    }
}

impl Color {
    /// Create a color from 8 bit per sample RGB values.
    pub const fn rgb8(r: u8, g: u8, b: u8) -> Color {
        Color::from_rgba32_u32(((r as u32) << 24) | ((g as u32) << 16) | ((b as u32) << 8) | 0xff)
    }

    /// Create a color from 8 bit per sample RGBA values.
    pub const fn rgba8(r: u8, g: u8, b: u8, a: u8) -> Color {
        Color::from_rgba32_u32(
            ((r as u32) << 24) | ((g as u32) << 16) | ((b as u32) << 8) | (a as u32),
        )
    }

    /// Create a color from a 32-bit rgba value (alpha as least significant byte).
    pub const fn from_rgba32_u32(rgba: u32) -> Color {
        Color::Rgba32(rgba)
    }

    /// Create a color from a grey value.
    ///
    /// ```
    /// use piet::Color;
    ///
    /// let grey_val = 0x55;
    ///
    /// let one = Color::grey8(grey_val);
    /// // is shorthand for
    /// let two = Color::rgb8(grey_val, grey_val, grey_val);
    ///
    /// assert_eq!(one.as_rgba_u32(), two.as_rgba_u32());
    /// ```
    pub const fn grey8(grey: u8) -> Color {
        Color::rgb8(grey, grey, grey)
    }

    /// Create a color with a grey value in the range 0.0..=1.0.
    pub fn grey(grey: impl Into<f64>) -> Color {
        let grey = grey.into();
        Color::rgb(grey, grey, grey)
    }

    /// Create a color from four floating point values, each in the range 0.0 to 1.0.
    ///
    /// The interpretation is the same as rgba32, and no greater precision is
    /// (currently) assumed.
    pub fn rgba<F: Into<f64>>(r: F, g: F, b: F, a: F) -> Color {
        let r = (r.into().max(0.0).min(1.0) * 255.0).round() as u32;
        let g = (g.into().max(0.0).min(1.0) * 255.0).round() as u32;
        let b = (b.into().max(0.0).min(1.0) * 255.0).round() as u32;
        let a = (a.into().max(0.0).min(1.0) * 255.0).round() as u32;
        Color::from_rgba32_u32((r << 24) | (g << 16) | (b << 8) | a)
    }

    /// Create a color from three floating point values, each in the range 0.0 to 1.0.
    ///
    /// The interpretation is the same as rgb8, and no greater precision is
    /// (currently) assumed.
    pub fn rgb<F: Into<f64>>(r: F, g: F, b: F) -> Color {
        let r = (r.into().max(0.0).min(1.0) * 255.0).round() as u32;
        let g = (g.into().max(0.0).min(1.0) * 255.0).round() as u32;
        let b = (b.into().max(0.0).min(1.0) * 255.0).round() as u32;
        Color::from_rgba32_u32((r << 24) | (g << 16) | (b << 8) | 0xff)
    }

    /// Create a color from a CIEL\*a\*b\* polar (also known as CIE HCL)
    /// specification.
    ///
    /// The `h` parameter is an angle in degrees, with 0 roughly magenta, 90
    /// roughly yellow, 180 roughly cyan, and 270 roughly blue. The `l`
    /// parameter is perceptual luminance, with 0 black and 100 white.
    /// The `c` parameter is a chrominance concentration, with 0 grayscale
    /// and a nominal maximum of 127 (in the future, higher values might
    /// be useful, for high gamut contexts).
    ///
    /// Currently this is just converted into sRGB, but in the future as we
    /// support high-gamut colorspaces, it can be used to specify more colors
    /// or existing colors with a higher accuracy.
    ///
    /// Currently out-of-gamut values are clipped to the nearest sRGB color,
    /// which is perhaps not ideal (the clipping might change the hue). See
    /// https://github.com/d3/d3-color/issues/33 for discussion.
    #[allow(non_snake_case)]
    pub fn hlc<F: Into<f64>>(h: F, l: F, c: F) -> Color {
        // The reverse transformation from Lab to XYZ, see
        // https://en.wikipedia.org/wiki/CIELAB_color_space
        fn f_inv(t: f64) -> f64 {
            let d = 6. / 29.;
            if t > d {
                t.powi(3)
            } else {
                3. * d * d * (t - 4. / 29.)
            }
        }
        let th = h.into() * (std::f64::consts::PI / 180.);
        let c = c.into();
        let a = c * th.cos();
        let b = c * th.sin();
        let L = l.into();
        let ll = (L + 16.) * (1. / 116.);
        // Produce raw XYZ values
        let X = f_inv(ll + a * (1. / 500.));
        let Y = f_inv(ll);
        let Z = f_inv(ll - b * (1. / 200.));
        // This matrix is the concatenation of three sources.
        // First, the white point is taken to be ICC standard D50, so
        // the diagonal matrix of [0.9642, 1, 0.8249]. Note that there
        // is some controversy around this value. However, it matches
        // the other matrices, thus minimizing chroma error.
        //
        // Second, an adaption matrix from D50 to D65. This is the
        // inverse of the recommended D50 to D65 adaptation matrix
        // from the W3C sRGB spec:
        // https://www.w3.org/Graphics/Color/srgb
        //
        // Finally, the conversion from XYZ to linear sRGB values,
        // also taken from the W3C sRGB spec.
        let r_lin = 3.02172918 * X - 1.61692294 * Y - 0.40480625 * Z;
        let g_lin = -0.94339358 * X + 1.91584267 * Y + 0.02755094 * Z;
        let b_lin = 0.06945666 * X - 0.22903204 * Y + 1.15957526 * Z;
        fn gamma(u: f64) -> f64 {
            if u <= 0.0031308 {
                12.92 * u
            } else {
                1.055 * u.powf(1. / 2.4) - 0.055
            }
        }
        Color::rgb(gamma(r_lin), gamma(g_lin), gamma(b_lin))
    }

    /// Create a color from a CIEL\*a\*b\* polar specification and alpha.
    ///
    /// The `a` value represents alpha in the range 0.0 to 1.0.
    pub fn hlca<F: Into<f64>>(h: F, l: F, c: F, a: impl Into<f64>) -> Color {
        Color::hlc(h, c, l).with_alpha(a)
    }

    /// Change just the alpha value of a color.
    ///
    /// The `a` value represents alpha in the range 0.0 to 1.0.
    pub fn with_alpha(self, a: impl Into<f64>) -> Color {
        let a = (a.into().max(0.0).min(1.0) * 255.0).round() as u32;
        Color::from_rgba32_u32((self.as_rgba_u32() & !0xff) | a)
    }

    /// Convert a color value to a 32-bit rgba value.
    pub fn as_rgba_u32(&self) -> u32 {
        match *self {
            Color::Rgba32(rgba) => rgba,
        }
    }

    /// Opaque white.
    pub const WHITE: Color = Color::rgb8(0xff, 0xff, 0xff);

    /// Opaque black.
    pub const BLACK: Color = Color::rgb8(0, 0, 0);
}