1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
// Copyright 2019 Matthieu Felix
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

//! This crate provides utilities to manipulate continuous
//! [piecewise linear functions](https://en.wikipedia.org/wiki/Piecewise_linear_function).
//!
//! They are internally represented as a list of `(x, y)` pairs, each representing a point of
//! inflection (or equivalently a limit between two linear pieces). The represented function is
//! assumed to be linear between each of these points.
//!
//! ## Domains
//!
//! The domain of a function is the range over which it is defined, that is, the range between
//! the smallest _x_ coordinate and the greatest one in the function's definition points.
//!
//! Most methods will refuse to operate on two (or more) functions that do not have the same
//! domain. You can use `expand_domain()` and `shrink_domain()` to adapt domains.
//!
//! Domains over all real numbers should be possible by using ±inf _x_ values, but this has not
//! been extensively tested.
//!
//! ## Numeric types
//!
//! This crate should support functions using any `CoordinateType` (more or less a rust-num `Num`),
//! however it has not been tested with types other than `f32` and `f64`.

extern crate geo;
extern crate num_traits;

#[cfg(feature = "serde")]
#[macro_use]
extern crate serde;

use std::cmp::Ordering;
use std::collections::BinaryHeap;
use std::convert::{TryFrom, TryInto};

pub use geo::{Coordinate, CoordinateType, Line, LineString, Point};
use num_traits::Signed;

/// A continuous piecewise linear function.
///
/// The function is represented as a list of `(x, y)` pairs, each representing a point of
/// inflection (or equivalently a limit between two linear pieces). The represented function is
/// assumed to be linear between each of these points.
///
/// ## Invariants
///
/// All methods defined on `PiecewiseLinearFunction` preserve the following invariants:
///
///   * There are at least two coordinates in the `coordinates` array
///   * The coordinates are in strictly increasing order of `x` value.
///
/// However, two consecutive segments do not necessarily have different slopes. These methods
/// will panic if invariants are broken by manually editing the `coordinates` vector.
///
/// This representation means that functions defined on an empty or singleton set, as well as
/// discontinuous functions, are not supported.
///
/// ## Example
///
/// ```
/// use piecewise_linear::PiecewiseLinearFunction;
/// use std::convert::TryFrom;
/// let f = PiecewiseLinearFunction::try_from(vec![(0., 0.), (1., 1.), (2., 1.5)]).unwrap();
/// assert_eq!(f.y_at_x(1.25), Some(1.125));
/// ```
#[derive(PartialEq, Clone, Debug)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub struct PiecewiseLinearFunction<T: CoordinateType> {
    /// Vector of points that make up the function.
    pub coordinates: Vec<Coordinate<T>>,
}

impl<T: CoordinateType> PiecewiseLinearFunction<T> {
    /// Creates a new `PiecewiseLinearFunction` from a vector of `Coordinates`.
    ///
    /// Returns a new PicewiseLinearFunction, or `None` if the invariants were not respected.
    pub fn new(coordinates: Vec<Coordinate<T>>) -> Option<Self> {
        if coordinates.len() >= 2 && coordinates.windows(2).all(|w| w[0].x < w[1].x) {
            Some(PiecewiseLinearFunction { coordinates })
        } else {
            None
        }
    }

    /// Returns a new constant `PiecewiseLinearFunction` with the specified domain and value.
    ///
    /// Returns `None` if the domain is not valid (i.e. `domain.1 <= domain.0`).
    pub fn constant(domain: (T, T), value: T) -> Option<Self> {
        if domain.0 < domain.1 {
            let coordinates = vec![(domain.0, value).into(), (domain.1, value).into()];
            Some(PiecewiseLinearFunction { coordinates })
        } else {
            None
        }
    }

    /// Returns a function's domain, represented as its min and max.
    pub fn domain(&self) -> (T, T) {
        (self.coordinates[0].x, self.coordinates.last().unwrap().x)
    }

    /// Checks whether this function has the same domain as another one.
    pub fn has_same_domain_as(&self, other: &PiecewiseLinearFunction<T>) -> bool {
        self.domain() == other.domain()
    }

    /// Returns an iterator over the segments of f.
    ///
    /// This iterator is guaranteed to have at least one element.
    pub fn segments_iter(&self) -> SegmentsIterator<T> {
        SegmentsIterator(self.coordinates.iter().peekable())
    }

    /// Returns an iterator over the joint points of inflection of `self` and `other`.
    ///
    /// See `points_of_inflection_iter()` in this module for details.
    pub fn points_of_inflection_iter<'a>(
        &'a self,
        other: &'a PiecewiseLinearFunction<T>,
    ) -> Option<PointsOfInflectionIterator<T>> {
        if !self.has_same_domain_as(other) {
            None
        } else {
            Some(PointsOfInflectionIterator {
                segment_iterators: vec![
                    self.segments_iter().peekable(),
                    other.segments_iter().peekable(),
                ],
                heap: BinaryHeap::new(),
                initial: true,
            })
        }
    }

    /// Returns a segment `((x1, y1), (x2, y2))` of this function such that `x1 <= x <= x2`.
    ///
    /// Returns `None` if `x` is outside the domain of f.
    pub fn segment_at_x(&self, x: T) -> Option<Line<T>> {
        let idx = match self
            .coordinates
            .binary_search_by(|val| bogus_compare(&val.x, &x))
        {
            Ok(idx) => idx,
            Err(idx) => {
                if idx == 0 || idx == self.coordinates.len() {
                    // Outside the function's domain
                    return None;
                } else {
                    idx
                }
            }
        };

        if idx == 0 {
            Some(Line::new(self.coordinates[idx], self.coordinates[idx + 1]))
        } else {
            Some(Line::new(self.coordinates[idx - 1], self.coordinates[idx]))
        }
    }

    /// Computes the value f(x) for this piecewise linear function.
    ///
    /// Returns `None` if `x` is outside the domain of f.
    pub fn y_at_x(&self, x: T) -> Option<T> {
        self.segment_at_x(x).map(|line| y_at_x(&line, x))
    }

    /// Returns a new piecewise linear function that is the restriction of this function to the
    /// specified domain.
    ///
    /// Returns `None` if `to_domain` is not a subset of the domain of `self`.
    pub fn shrink_domain(&self, to_domain: (T, T)) -> Option<PiecewiseLinearFunction<T>> {
        let order = compare_domains(self.domain(), to_domain);
        match order {
            Some(Ordering::Equal) => Some(self.clone()),
            Some(Ordering::Greater) => {
                let mut new_points = Vec::new();
                for segment in self.segments_iter() {
                    if let Some(restricted) = line_in_domain(&segment, to_domain) {
                        // segment.start.x was segment.end.x at the last iteration; it it's less
                        // than or equal to the domain's start, the previous segment was totally
                        // discarded, but this point should still be added.
                        if segment.start.x <= to_domain.0 {
                            new_points.push(restricted.start);
                        }
                        new_points.push(restricted.end);
                    }
                }
                Some(new_points.try_into().unwrap())
            }
            _ => None,
        }
    }

    /// Returns a new piecewise linear function that is the expansion of this function to the
    /// specified domain.
    ///
    /// At most one value is added on either side. See `ExpandDomainStrategy` for options
    /// determining how these added values are picked.
    pub fn expand_domain(
        &self,
        to_domain: (T, T),
        strategy: ExpandDomainStrategy,
    ) -> PiecewiseLinearFunction<T> {
        if compare_domains(self.domain(), to_domain) == Some(Ordering::Equal) {
            return self.clone();
        }
        let mut new_points = Vec::new();
        if self.coordinates[0].x > to_domain.0 {
            match &strategy {
                ExpandDomainStrategy::ExtendSegment => new_points.push(Coordinate {
                    x: to_domain.0,
                    y: y_at_x(
                        &Line::new(self.coordinates[0], self.coordinates[1]),
                        to_domain.0,
                    ),
                }),
                ExpandDomainStrategy::ExtendValue => {
                    new_points.push((to_domain.0, self.coordinates[0].y).into());
                    new_points.push(self.coordinates[0]);
                }
            }
        } else {
            new_points.push(self.coordinates[0]);
        }

        let last_index = self.coordinates.len() - 1;
        new_points.extend_from_slice(&self.coordinates[1..last_index]);

        if self.coordinates[last_index].x < to_domain.1 {
            match &strategy {
                ExpandDomainStrategy::ExtendSegment => new_points.push(Coordinate {
                    x: to_domain.1,
                    y: y_at_x(
                        &Line::new(
                            self.coordinates[last_index - 1],
                            self.coordinates[last_index],
                        ),
                        to_domain.1,
                    ),
                }),
                ExpandDomainStrategy::ExtendValue => {
                    new_points.push(self.coordinates[last_index]);
                    new_points.push((to_domain.1, self.coordinates[last_index].y).into());
                }
            }
        } else {
            new_points.push(self.coordinates[last_index])
        }

        new_points.try_into().unwrap()
    }

    /// Sums this method with another piecewise linear function.
    ///
    /// Both functions must have the same domain; returns `None` otherwise.
    pub fn add(&self, other: &PiecewiseLinearFunction<T>) -> Option<PiecewiseLinearFunction<T>> {
        self.points_of_inflection_iter(other).map(|poi| {
            PiecewiseLinearFunction::new(
                poi.map(|(x, coords)| Coordinate {
                    x,
                    y: coords[0] + coords[1],
                })
                .collect(),
            )
            // This unwrap is guaranteed to succeed as the starting POI has generates ordered x,
            // which do not get modified.
            .unwrap()
        })
    }

    /// Returns a new piecewise linear function that is the maximum of `self` and `other`.
    ///
    /// Note that the resulting function may have more points of inflection than either function.
    /// For instance,
    ///
    /// ## Example
    ///
    /// ```
    /// use piecewise_linear::PiecewiseLinearFunction;
    /// use std::convert::TryFrom;
    /// let f = PiecewiseLinearFunction::try_from(vec![(0., 1.), (1., 0.)]).unwrap();
    /// let g = PiecewiseLinearFunction::try_from(vec![(0., 0.), (1., 1.)]).unwrap();
    /// assert_eq!(
    ///     f.max(&g).unwrap(),
    ///     PiecewiseLinearFunction::try_from(vec![(0., 1.), (0.5, 0.5), (1., 1.)]).unwrap()
    /// );
    /// ```
    ///
    /// Returns `None` if the domains of `self` and `other` are not equal.
    pub fn max(&self, other: &PiecewiseLinearFunction<T>) -> Option<PiecewiseLinearFunction<T>> {
        let mut poi_iter = self.points_of_inflection_iter(other)?;
        let mut new_values = Vec::new();

        let (x, values) = poi_iter.next().unwrap();
        let (i_largest, largest) = argmax(&values).unwrap();
        new_values.push(Coordinate { x, y: *largest });

        let mut prev_largest = i_largest;
        let mut prev_x = x;
        let mut prev_values = values;

        for (x, values) in poi_iter {
            let (i_largest, largest) = argmax(&values).unwrap();
            if i_largest != prev_largest {
                let (inter_x, inter_y) = line_intersect(
                    &Line::new((prev_x, prev_values[0]), (x, values[0])),
                    &Line::new((prev_x, prev_values[1]), (x, values[1])),
                );
                // This condition seems necessary as argmax() is likely unstable, so i_largest
                // can change even if two lines remain equal.
                if inter_x > prev_x && inter_x < x {
                    new_values.push(Coordinate {
                        x: inter_x,
                        y: inter_y,
                    });
                }
            }
            new_values.push(Coordinate { x, y: *largest });
            prev_largest = i_largest;
            prev_x = x;
            prev_values = values;
        }

        Some(PiecewiseLinearFunction::new(new_values).unwrap())
    }
}

/// Controls how the domain of a function is expanded using `expand_domain()` on
/// `PiecewiseLinearFunction`.
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub enum ExpandDomainStrategy {
    /// Extend the segment at the edge of the function.
    ExtendSegment,
    /// Add a constant segment with the value of the edge point of the function.
    ExtendValue,
}

impl<T: CoordinateType + Signed> PiecewiseLinearFunction<T> {
    /// Returns -f.
    pub fn negate(&self) -> PiecewiseLinearFunction<T> {
        PiecewiseLinearFunction::new(
            self.coordinates
                .iter()
                .map(|Coordinate { x, y }| Coordinate { x: *x, y: -(*y) })
                .collect(),
        )
        // This unwrap is guaranteed to succeed because the coordinate's x values haven't changed.
        .unwrap()
    }

    /// Computes the minimum of this function and `other`.
    ///
    /// Returns `None` in case of a domain error.
    pub fn min(&self, other: &PiecewiseLinearFunction<T>) -> Option<PiecewiseLinearFunction<T>> {
        Some(self.negate().max(&other.negate())?.negate())
    }

    /// Computes the absolute value of this function.
    pub fn abs(&self) -> PiecewiseLinearFunction<T> {
        self.max(&self.negate()).unwrap()
    }
}

impl<T: CoordinateType + Signed> ::std::ops::Neg for PiecewiseLinearFunction<T> {
    type Output = Self;

    fn neg(self) -> Self::Output {
        self.negate()
    }
}

impl<T: CoordinateType + ::std::iter::Sum> PiecewiseLinearFunction<T> {
    /// Returns the integral of the considered function over its entire domain.
    pub fn integrate(&self) -> T {
        self.segments_iter()
            .map(|segment| {
                let (min_y, max_y) = if segment.start.y < segment.end.y {
                    (segment.start.y, segment.end.y)
                } else {
                    (segment.end.y, segment.start.y)
                };
                let x_span = segment.end.x - segment.start.x;
                x_span * (min_y + max_y / T::from(2).unwrap())
            })
            .sum()
    }
}

/**** Conversions ****/

impl<T: CoordinateType> TryFrom<LineString<T>> for PiecewiseLinearFunction<T> {
    type Error = ();

    fn try_from(value: LineString<T>) -> Result<Self, Self::Error> {
        PiecewiseLinearFunction::new(value.0).ok_or(())
    }
}

impl<T: CoordinateType> TryFrom<Vec<Coordinate<T>>> for PiecewiseLinearFunction<T> {
    type Error = ();

    fn try_from(value: Vec<Coordinate<T>>) -> Result<Self, Self::Error> {
        PiecewiseLinearFunction::new(value).ok_or(())
    }
}

impl<T: CoordinateType> TryFrom<Vec<Point<T>>> for PiecewiseLinearFunction<T> {
    type Error = ();

    fn try_from(value: Vec<Point<T>>) -> Result<Self, Self::Error> {
        PiecewiseLinearFunction::new(value.into_iter().map(|p| p.0).collect()).ok_or(())
    }
}

impl<T: CoordinateType> TryFrom<Vec<(T, T)>> for PiecewiseLinearFunction<T> {
    type Error = ();

    fn try_from(value: Vec<(T, T)>) -> Result<Self, Self::Error> {
        PiecewiseLinearFunction::new(value.into_iter().map(Coordinate::from).collect()).ok_or(())
    }
}

impl<T: CoordinateType> Into<Vec<(T, T)>> for PiecewiseLinearFunction<T> {
    fn into(self) -> Vec<(T, T)> {
        self.coordinates
            .into_iter()
            .map(|coord| coord.x_y())
            .collect()
    }
}

/**** Iterators ****/

#[derive(Debug, Clone, Copy, PartialEq)]
struct NextSegment<T: CoordinateType> {
    x: T,
    index: usize,
}

impl<T: CoordinateType> ::std::cmp::Eq for NextSegment<T> {}

impl<T: CoordinateType> ::std::cmp::PartialOrd for NextSegment<T> {
    fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
        self.x.partial_cmp(&other.x).map(|r| r.reverse())
    }
}

impl<T: CoordinateType> ::std::cmp::Ord for NextSegment<T> {
    fn cmp(&self, other: &Self) -> Ordering {
        bogus_compare(self, other)
    }
}

/// Structure returned by `points_of_inflection_iter()`
///
/// See that function's documentation for details.
pub struct PointsOfInflectionIterator<'a, T: CoordinateType + 'a> {
    segment_iterators: Vec<::std::iter::Peekable<SegmentsIterator<'a, T>>>,
    heap: BinaryHeap<NextSegment<T>>,
    initial: bool,
}

impl<'a, T: CoordinateType + 'a> PointsOfInflectionIterator<'a, T> {
    /// Helper method to avoid having rust complain about mutably accessing the segment iterators
    /// and heap at the same time.
    fn initialize(
        segment_iterators: &mut Vec<::std::iter::Peekable<SegmentsIterator<'a, T>>>,
        heap: &mut BinaryHeap<NextSegment<T>>,
    ) -> (T, Vec<T>) {
        let values = segment_iterators
            .iter_mut()
            .enumerate()
            .map(|(index, it)| {
                let seg = it.peek().unwrap();
                heap.push(NextSegment {
                    x: seg.end.x,
                    index,
                });
                seg.start.y
            })
            .collect();
        let x = segment_iterators[0].peek().unwrap().start.x;
        (x, values)
    }
}

impl<'a, T: CoordinateType + 'a> Iterator for PointsOfInflectionIterator<'a, T> {
    type Item = (T, Vec<T>);

    fn next(&mut self) -> Option<Self::Item> {
        if self.initial {
            self.initial = false;
            Some(Self::initialize(
                &mut self.segment_iterators,
                &mut self.heap,
            ))
        } else {
            self.heap.peek().cloned().map(|next_segment| {
                let x = next_segment.x;
                let values = self
                    .segment_iterators
                    .iter_mut()
                    .map(|segment_iterator| y_at_x(segment_iterator.peek().unwrap(), x))
                    .collect();

                while let Some(segt) = self.heap.peek().cloned() {
                    if segt.x != x {
                        break;
                    }
                    self.heap.pop();
                    self.segment_iterators[segt.index].next();
                    if let Some(segment) = self.segment_iterators[segt.index].peek().cloned() {
                        self.heap.push(NextSegment {
                            x: segment.end.x,
                            index: segt.index,
                        })
                    }
                }

                (x, values)
            })
        }
    }
}

/// Structure returned by `segments_iter()` on a `PiecewiseLinearFunction`.
pub struct SegmentsIterator<'a, T: CoordinateType + 'a>(
    ::std::iter::Peekable<::std::slice::Iter<'a, Coordinate<T>>>,
);

impl<'a, T: CoordinateType + 'a> Iterator for SegmentsIterator<'a, T> {
    type Item = Line<T>;

    fn next(&mut self) -> Option<Self::Item> {
        self.0
            .next()
            .and_then(|first| self.0.peek().map(|second| Line::new(*first, **second)))
    }
}

/**** General functions ****/

/// Returns an iterator over pairs `(x, values)`, where `x` is the union of all points of
/// inflection of `self` and `other`, and `values` is a vector of the values of all passed
/// functions, in the same order, at the corresponding `x`.
///
/// ## Example
///
/// ```
/// use std::convert::TryFrom;
/// use piecewise_linear::{PiecewiseLinearFunction, points_of_inflection_iter};
/// let f = PiecewiseLinearFunction::try_from(vec![(0., 0.), (1., 1.), (2., 1.5)]).unwrap();
/// let g = PiecewiseLinearFunction::try_from(vec![(0., 0.), (1.5, 3.), (2., 10.)]).unwrap();
/// assert_eq!(
///     points_of_inflection_iter(vec![f, g].as_slice()).unwrap().collect::<Vec<_>>(),
///     vec![(0., vec![0., 0.]), (1., vec![1., 2.]), (1.5, vec![1.25, 3.]), (2., vec![1.5, 10.])]
/// );
/// ```
///
/// ## Complexity
///
/// The complexity of this method is _O(k log(k) n)_, where _k_ is the number of functions passed,
/// and _n_ is the number of points in each function.
pub fn points_of_inflection_iter<'a, T: CoordinateType + 'a>(
    funcs: &'a [PiecewiseLinearFunction<T>],
) -> Option<PointsOfInflectionIterator<'a, T>> {
    if funcs.is_empty() || !funcs.windows(2).all(|w| w[0].has_same_domain_as(&w[1])) {
        return None;
    }
    Some(PointsOfInflectionIterator {
        segment_iterators: funcs.iter().map(|f| f.segments_iter().peekable()).collect(),
        heap: BinaryHeap::new(),
        initial: true,
    })
}

/// Sums the functions together. Returns `None` in case of domain error.
///
/// This is faster than calling .add() repeatedly by a factor of _k / log(k)_.
pub fn sum<'a, T: CoordinateType + ::std::iter::Sum + 'a>(
    funcs: &[PiecewiseLinearFunction<T>],
) -> Option<PiecewiseLinearFunction<T>> {
    points_of_inflection_iter(funcs).map(|poi| {
        PiecewiseLinearFunction::new(
            poi.map(|(x, values)| Coordinate {
                x,
                y: values.iter().cloned().sum(),
            })
            .collect(),
        )
        // This unwrap is guaranteed to succeed because the coordinate's x values haven't changed.
        .unwrap()
    })
}

/**** Helpers ****/

/// Returns the restriction of segment `l` to the given domain, or `None` if the line's
/// intersection with the domain is either a singleton or empty.
fn line_in_domain<T: CoordinateType>(l: &Line<T>, domain: (T, T)) -> Option<Line<T>> {
    if l.end.x <= domain.0 || l.start.x >= domain.1 {
        None
    } else {
        let left_point = if l.start.x >= domain.0 {
            l.start
        } else {
            (domain.0, y_at_x(l, domain.0)).into()
        };
        let right_point = if l.end.x <= domain.1 {
            l.end
        } else {
            (domain.1, y_at_x(l, domain.1)).into()
        };
        Some(Line::new(left_point, right_point))
    }
}

fn y_at_x<T: CoordinateType>(line: &Line<T>, x: T) -> T {
    line.start.y + (x - line.start.x) * line.slope()
}

fn line_intersect<T: CoordinateType>(l1: &Line<T>, l2: &Line<T>) -> (T, T) {
    let y_intercept_1 = l1.start.y - l1.start.x * l1.slope();
    let y_intercept_2 = l2.start.y - l2.start.x * l2.slope();

    let x_intersect = (y_intercept_2 - y_intercept_1) / (l1.slope() - l2.slope());
    let y_intersect = y_at_x(l1, x_intersect);
    (x_intersect, y_intersect)
}

fn compare_domains<T: CoordinateType>(d1: (T, T), d2: (T, T)) -> Option<Ordering> {
    if d1 == d2 {
        Some(Ordering::Equal)
    } else if d1.0 <= d2.0 && d1.1 >= d2.1 {
        Some(Ordering::Greater)
    } else if d2.0 <= d1.0 && d2.1 >= d1.1 {
        Some(Ordering::Less)
    } else {
        None
    }
}

fn bogus_compare<T: PartialOrd>(a: &T, b: &T) -> Ordering {
    a.partial_cmp(b).unwrap_or(Ordering::Equal)
}

fn argmax<T: CoordinateType>(values: &[T]) -> Option<(usize, &T)> {
    values
        .iter()
        .enumerate()
        .max_by(|(_, a), (_, b)| bogus_compare(a, b))
}

#[cfg(test)]
mod tests {
    use std::convert::TryInto;

    use super::*;

    fn get_test_function() -> PiecewiseLinearFunction<f64> {
        PiecewiseLinearFunction::try_from(vec![
            (-5.25, std::f64::MIN),
            (-std::f64::consts::FRAC_PI_2, 0.1),
            (-std::f64::consts::FRAC_PI_3, 0.1 + std::f64::EPSILON),
            (0.1, 1.),
            (1., 2.),
            (2., 3.),
            (3., 4.),
            (std::f64::INFINITY, std::f64::NEG_INFINITY),
        ])
        .unwrap()
    }

    #[test]
    fn test_y_at_x() {
        assert_eq!(y_at_x(&Line::new((0., 0.), (1., 1.)), 0.25), 0.25);
        assert_eq!(y_at_x(&Line::new((1., 0.), (2., 1.)), 1.25), 0.25);
    }

    #[test]
    fn test_constant() {
        assert_eq!(PiecewiseLinearFunction::constant((0.5, 0.5), 1.), None);
        assert_eq!(PiecewiseLinearFunction::constant((0.5, -0.5), 1.), None);
        assert_eq!(
            PiecewiseLinearFunction::constant((-25., -13.), 1.).unwrap(),
            vec![(-25., 1.), (-13., 1.)].try_into().unwrap()
        );
    }

    #[test]
    fn test_domain() {
        assert_eq!(
            PiecewiseLinearFunction::constant((-4., 5.25), 8.2)
                .unwrap()
                .domain(),
            (-4., 5.25)
        );
        assert_eq!(
            PiecewiseLinearFunction::try_from(vec![
                (std::f64::NEG_INFINITY, -1.),
                (0., 0.),
                (std::f64::INFINITY, 0.)
            ])
            .unwrap()
            .domain(),
            (std::f64::NEG_INFINITY, std::f64::INFINITY)
        );
    }

    #[test]
    fn test_segment_at_x() {
        assert_eq!(
            get_test_function().segment_at_x(1.5).unwrap(),
            Line::new((1., 2.), (2., 3.))
        );
        assert_eq!(
            get_test_function().segment_at_x(1.).unwrap(),
            Line::new((0.1, 1.), (1., 2.))
        );
    }

    #[test]
    fn test_segments_iter() {
        let f = PiecewiseLinearFunction::try_from(vec![(0., 0.), (1., 1.), (2., 1.5)]).unwrap();
        assert_eq!(
            f.segments_iter().collect::<Vec<_>>(),
            vec![
                Line::new((0., 0.), (1., 1.)),
                Line::new((1., 1.), (2., 1.5))
            ]
        );
    }

    #[test]
    fn test_points_of_inflection_iter() {
        let f = PiecewiseLinearFunction::try_from(vec![(0., 0.), (1., 1.), (2., 1.5)]).unwrap();
        let g = PiecewiseLinearFunction::try_from(vec![(0., 0.), (1.5, 3.), (2., 10.)]).unwrap();
        assert_eq!(
            f.points_of_inflection_iter(&g).unwrap().collect::<Vec<_>>(),
            vec![
                (0., vec![0., 0.]),
                (1., vec![1., 2.]),
                (1.5, vec![1.25, 3.]),
                (2., vec![1.5, 10.])
            ]
        );
    }

    #[test]
    fn test_line_in_domain() {
        // Case 1 - fully outside
        assert_eq!(
            line_in_domain(&Line::new((-1., 1.), (0., 2.)), (1., 2.)),
            None
        );
        assert_eq!(
            line_in_domain(&Line::new((-1., 1.), (0., 2.)), (-3., -2.)),
            None
        );
        assert_eq!(
            line_in_domain(&Line::new((-1., 1.), (0., 2.)), (0., 1.)),
            None
        );

        // Case 2 - fully inside
        assert_eq!(
            line_in_domain(&Line::new((-1., 1.), (0., 2.)), (-2., 1.)),
            Some(Line::new((-1., 1.), (0., 2.)))
        );

        // Case 3 - overlap to the right
        assert_eq!(
            line_in_domain(&Line::new((-1., 1.), (0., 2.)), (-0.5, 0.5)),
            Some(Line::new((-0.5, 1.5), (0., 2.)))
        );

        // Case 4 - overlap to the left
        assert_eq!(
            line_in_domain(&Line::new((-1., 1.), (0., 2.)), (-1., -0.25)),
            Some(Line::new((-1., 1.), (-0.25, 1.75)))
        );

        // Case 5 - overlap on both sides
        assert_eq!(
            line_in_domain(&Line::new((-1., 1.), (0., 2.)), (-0.75, -0.25)),
            Some(Line::new((-0.75, 1.25), (-0.25, 1.75)))
        );
    }

    #[test]
    fn test_shrink_domain() {
        let first_val = y_at_x(
            &Line::new(
                (-std::f64::consts::FRAC_PI_3, 0.1 + std::f64::EPSILON),
                (0.1, 1.),
            ),
            0.,
        );
        assert_eq!(
            get_test_function()
                .shrink_domain((0.0, std::f64::INFINITY))
                .unwrap(),
            PiecewiseLinearFunction::try_from(vec![
                (0., first_val),
                (0.1, 1.),
                (1., 2.),
                (2., 3.),
                (3., 4.),
                (std::f64::INFINITY, std::f64::NEG_INFINITY),
            ])
            .unwrap()
        );
    }

    #[test]
    fn test_expand_domain() {
        let f = PiecewiseLinearFunction::try_from(vec![(0., 0.), (1., 1.), (2., 1.5)]).unwrap();

        // Case 1: no expansion
        assert_eq!(
            f.expand_domain((0., 2.), ExpandDomainStrategy::ExtendSegment),
            f
        );

        // Case 2: left expansion
        assert_eq!(
            f.expand_domain((-1., 2.), ExpandDomainStrategy::ExtendSegment),
            vec![(-1., -1.), (1., 1.), (2., 1.5)].try_into().unwrap()
        );
        assert_eq!(
            f.expand_domain((-1., 2.), ExpandDomainStrategy::ExtendValue),
            vec![(-1., 0.), (0., 0.), (1., 1.), (2., 1.5)]
                .try_into()
                .unwrap()
        );

        // Case 3: right expansion
        assert_eq!(
            f.expand_domain((0., 4.), ExpandDomainStrategy::ExtendSegment),
            vec![(0., 0.), (1., 1.), (4., 2.5)].try_into().unwrap()
        );
        assert_eq!(
            f.expand_domain((0., 4.), ExpandDomainStrategy::ExtendValue),
            vec![(0., 0.), (1., 1.), (2., 1.5), (4., 1.5)]
                .try_into()
                .unwrap()
        );
    }

    #[test]
    fn test_negative() {
        let f = PiecewiseLinearFunction::try_from(vec![(0., 0.), (1., 1.), (2., 1.5)]).unwrap();
        assert_eq!(
            f.negate(),
            vec![(0., -0.), (1., -1.), (2., -1.5)].try_into().unwrap()
        )
    }

    #[test]
    fn test_line_intersect() {
        assert_eq!(
            line_intersect(
                &Line::new((-2., -1.), (5., 3.)),
                &Line::new((-1., 4.), (6., 2.))
            ),
            (4. + 1. / 6., 2. + 11. / 21.)
        );
    }
}