1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
//! A proportional-integral-derivative (PID) controller.
#![no_std]

use num_traits::float::FloatCore;
#[cfg(feature = "serde")]
use serde::{Deserialize, Serialize};

#[derive(Clone, Copy, Debug, Eq, PartialEq, Ord, PartialOrd)]
#[cfg_attr(feature = "serde", derive(Deserialize, Serialize))]
pub struct Pid<T: FloatCore> {
    /// Proportional gain.
    pub kp: T,
    /// Integral gain.
    pub ki: T,
    /// Derivative gain.
    pub kd: T,
    /// Limit of contribution of P term: `(-p_limit <= P <= p_limit)`
    pub p_limit: T,
    /// Limit of contribution of I term `(-i_limit <= I <= i_limit)`
    pub i_limit: T,
    /// Limit of contribution of D term `(-d_limit <= D <= d_limit)`
    pub d_limit: T,
    /// Limit of output `(-output_limit <= output <= output_limit)`
    pub output_limit: T,

    pub setpoint: T,
    prev_measurement: Option<T>,
    /// `integral_term = sum[error(t) * ki(t)] (for all t)`
    integral_term: T,
}

#[derive(Debug)]
pub struct ControlOutput<T: FloatCore> {
    /// Contribution of the P term to the output.
    pub p: T,
    /// Contribution of the I term to the output.
    /// `i = sum[error(t) * ki(t)] (for all t)`
    pub i: T,
    /// Contribution of the D term to the output.
    pub d: T,
    /// Output of the PID controller.
    pub output: T,
}

impl<T> Pid<T>
where
    T: FloatCore,
{
    pub fn new(
        kp: T,
        ki: T,
        kd: T,
        p_limit: T,
        i_limit: T,
        d_limit: T,
        output_limit: T,
        setpoint: T,
    ) -> Self {
        Self {
            kp,
            ki,
            kd,
            p_limit,
            i_limit,
            d_limit,
            output_limit,
            setpoint,
            prev_measurement: None,
            integral_term: T::zero(),
        }
    }

    /// Resets the integral term back to zero. This may drastically change the
    /// control output.
    pub fn reset_integral_term(&mut self) {
        self.integral_term = T::zero();
    }

    /// Given a new measurement, calculates the next control output.
    ///
    /// # Panics
    /// If a setpoint has not been set via `update_setpoint()`.
    pub fn next_control_output(&mut self, measurement: T) -> ControlOutput<T> {
        let error = self.setpoint - measurement;

        let p_unbounded = error * self.kp;
        let p = apply_limit(self.p_limit, p_unbounded);

        // Mitigate output jumps when ki(t) != ki(t-1).
        // While it's standard to use an error_integral that's a running sum of
        // just the error (no ki), because we support ki changing dynamically,
        // we store the entire term so that we don't need to remember previous
        // ki values.
        self.integral_term = self.integral_term + error * self.ki;
        // Mitigate integral windup: Don't want to keep building up error
        // beyond what i_limit will allow.
        self.integral_term = apply_limit(self.i_limit, self.integral_term);

        // Mitigate derivative kick: Use the derivative of the measurement
        // rather than the derivative of the error.
        let d_unbounded = -match self.prev_measurement.as_ref() {
            Some(prev_measurement) => measurement - *prev_measurement,
            None => T::zero(),
        } * self.kd;
        self.prev_measurement = Some(measurement);
        let d = apply_limit(self.d_limit, d_unbounded);

        let output = p + self.integral_term + d;
        let output = apply_limit(self.output_limit, output);

        ControlOutput {
            p,
            i: self.integral_term,
            d,
            output: output,
        }
    }
}

/// Saturating the input `value` according the absolute `limit` (`-limit <= output <= limit`).
fn apply_limit<T: FloatCore>(limit: T, value: T) -> T {
    limit.min(value.abs()) * value.signum()
}

#[cfg(test)]
mod tests {
    use super::Pid;

    #[test]
    fn proportional() {
        let mut pid = Pid::new(2.0, 0.0, 0.0, 100.0, 100.0, 100.0, 100.0, 10.0);
        assert_eq!(pid.setpoint, 10.0);

        // Test simple proportional
        assert_eq!(pid.next_control_output(0.0).output, 20.0);

        // Test proportional limit
        pid.p_limit = 10.0;
        assert_eq!(pid.next_control_output(0.0).output, 10.0);
    }

    #[test]
    fn derivative() {
        let mut pid = Pid::new(0.0, 0.0, 2.0, 100.0, 100.0, 100.0, 100.0, 10.0);

        // Test that there's no derivative since it's the first measurement
        assert_eq!(pid.next_control_output(0.0).output, 0.0);

        // Test that there's now a derivative
        assert_eq!(pid.next_control_output(5.0).output, -10.0);

        // Test derivative limit
        pid.d_limit = 5.0;
        assert_eq!(pid.next_control_output(10.0).output, -5.0);
    }

    #[test]
    fn integral() {
        let mut pid = Pid::new(0.0, 2.0, 0.0, 100.0, 100.0, 100.0, 100.0, 10.0);

        // Test basic integration
        assert_eq!(pid.next_control_output(0.0).output, 20.0);
        assert_eq!(pid.next_control_output(0.0).output, 40.0);
        assert_eq!(pid.next_control_output(5.0).output, 50.0);

        // Test limit
        pid.i_limit = 50.0;
        assert_eq!(pid.next_control_output(5.0).output, 50.0);
        // Test that limit doesn't impede reversal of error integral
        assert_eq!(pid.next_control_output(15.0).output, 40.0);

        // Test that error integral accumulates negative values
        let mut pid2 = Pid::new(0.0, 2.0, 0.0, 100.0, 100.0, 100.0, 100.0, -10.0);
        assert_eq!(pid2.next_control_output(0.0).output, -20.0);
        assert_eq!(pid2.next_control_output(0.0).output, -40.0);

        pid2.i_limit = 50.0;
        assert_eq!(pid2.next_control_output(-5.0).output, -50.0);
        // Test that limit doesn't impede reversal of error integral
        assert_eq!(pid2.next_control_output(-15.0).output, -40.0);
    }

    #[test]
    fn output_limit() {
        let mut pid = Pid::new(1.0, 0.0, 0.0, 100.0, 100.0, 100.0, 1.0, 10.0);

        let out = pid.next_control_output(0.0);
        assert_eq!(out.p, 10.0); // 1.0 * 10.0
        assert_eq!(out.output, 1.0);

        let out = pid.next_control_output(20.0);
        assert_eq!(out.p, -10.0); // 1.0 * (10.0 - 20.0)
        assert_eq!(out.output, -1.0);
    }

    #[test]
    fn pid() {
        let mut pid = Pid::new(1.0, 0.1, 1.0, 100.0, 100.0, 100.0, 100.0, 10.0);

        let out = pid.next_control_output(0.0);
        assert_eq!(out.p, 10.0); // 1.0 * 10.0
        assert_eq!(out.i, 1.0); // 0.1 * 10.0
        assert_eq!(out.d, 0.0); // -(1.0 * 0.0)
        assert_eq!(out.output, 11.0);

        let out = pid.next_control_output(5.0);
        assert_eq!(out.p, 5.0); // 1.0 * 5.0
        assert_eq!(out.i, 1.5); // 0.1 * (10.0 + 5.0)
        assert_eq!(out.d, -5.0); // -(1.0 * 5.0)
        assert_eq!(out.output, 1.5);

        let out = pid.next_control_output(11.0);
        assert_eq!(out.p, -1.0); // 1.0 * -1.0
        assert_eq!(out.i, 1.4); // 0.1 * (10.0 + 5.0 - 1)
        assert_eq!(out.d, -6.0); // -(1.0 * 6.0)
        assert_eq!(out.output, -5.6);

        let out = pid.next_control_output(10.0);
        assert_eq!(out.p, 0.0); // 1.0 * 0.0
        assert_eq!(out.i, 1.4); // 0.1 * (10.0 + 5.0 - 1.0 + 0.0)
        assert_eq!(out.d, 1.0); // -(1.0 * -1.0)
        assert_eq!(out.output, 2.4);
    }

    #[test]
    fn f32_and_f64() {
        let mut pid32 = Pid::new(2.0f32, 0.0, 0.0, 100.0, 100.0, 100.0, 100.0, 10.0);

        let mut pid64 = Pid::new(2.0f64, 0.0, 0.0, 100.0, 100.0, 100.0, 100.0, 10.0);

        assert_eq!(
            pid32.next_control_output(0.0).output,
            pid64.next_control_output(0.0).output as f32
        );
        assert_eq!(
            pid32.next_control_output(0.0).output as f64,
            pid64.next_control_output(0.0).output
        );
    }
}