1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
/*!
Wrapper for PxBase.
 */

use super::px_type::*;
use enumflags2::BitFlags;
use physx_macros::physx_type;
use physx_sys::{
    PxBase, PxBaseFlag, PxBaseFlags, PxBase_getBaseFlags, PxBase_getConcreteType,
    PxBase_getConcreteTypeName, PxBase_isReleasable, PxBase_release_mut, PxBase_setBaseFlag_mut,
    PxBase_setBaseFlags_mut,
};

/*******************************************************************************
 * Section ENUMERATIONS                                                        *
 ******************************************************************************/

#[derive(Copy, Clone, BitFlags, Debug)]
#[repr(u16)]
pub enum BaseFlag {
    OwnsMemory = 1,
    IsReleasable = 2,
}

impl Into<PxBaseFlag::Enum> for BaseFlag {
    fn into(self) -> PxBaseFlag::Enum {
        self as PxBaseFlag::Enum
    }
}

#[derive(Debug, Clone, Copy, PartialEq)]
pub enum ConcreteType {
    Undefined = 0,
    Heightfield = 1,
    ConvexMesh = 2,
    TriangleMeshBvh33 = 3,
    TriangleMeshBvh34 = 4,
    RigidDynamic = 5,
    RigidStatic = 6,
    Shape = 7,
    Material = 8,
    Constraint = 9,
    Aggregate = 10,
    Articulation = 11,
    ArticulationReducedCoordinate = 12,
    ArticulationLink = 13,
    AticulationJoint = 14,
    ArticulationJointReducedCoordinate = 15,
    PruningStructure = 16,
    BvhStructure = 17,
    PhysxCoreCount = 18,
    FirstPhysxExtension = 256,
    FirstVehicleExtension = 512,
    FirstUserExtension = 1024,
}

impl From<u16> for ConcreteType {
    fn from(val: u16) -> Self {
        use ConcreteType::*;
        match val {
            0 => Undefined,
            1 => Heightfield,
            2 => ConvexMesh,
            3 => TriangleMeshBvh33,
            4 => TriangleMeshBvh34,
            5 => RigidDynamic,
            6 => RigidStatic,
            7 => Shape,
            8 => Material,
            9 => Constraint,
            10 => Aggregate,
            11 => Articulation,
            12 => ArticulationReducedCoordinate,
            13 => ArticulationLink,
            14 => AticulationJoint,
            15 => ArticulationJointReducedCoordinate,
            16 => PruningStructure,
            17 => BvhStructure,
            18 => PhysxCoreCount,
            256 => FirstPhysxExtension,
            512 => FirstVehicleExtension,
            1024 => FirstUserExtension,
            _ => Undefined,
        }
    }
}

/*******************************************************************************
 * Section BASE                                                                *
 ******************************************************************************/

#[physx_type]
impl Base {
    /// Release this object, invalidating the pointer
    pub fn release(&mut self) {
        unsafe {
            PxBase_release_mut(self.get_raw_mut());
        }
    }

    /// Get the name of the real type referenced by this pointer, or None if the returned string is not valid
    pub fn get_concrete_type_name(&self) -> Option<&str> {
        unsafe {
            std::ffi::CStr::from_ptr(PxBase_getConcreteTypeName(self.get_raw()) as _)
                .to_str()
                .ok()
        }
    }

    /// Returns an enumerated value identifying the type. You can match this against the raw values in ConcreteType to identify the type of this object
    pub fn get_concrete_type(&self) -> ConcreteType {
        unsafe { PxBase_getConcreteType(self.get_raw()).into() }
    }

    /// Set or unset the specified flag on this object.
    pub fn set_base_flag(&mut self, flag: BaseFlag, value: bool) {
        unsafe {
            PxBase_setBaseFlag_mut(self.get_raw_mut(), flag.into(), value);
        }
    }

    /// Set the BaseFlags of this object. Note that replaces all flags currently
    /// on the object. Use `set_base_flag` to set individual flags.
    pub fn set_base_flags(&mut self, in_flags: BitFlags<BaseFlag>) {
        unsafe {
            PxBase_setBaseFlags_mut(
                self.get_raw_mut(),
                PxBaseFlags {
                    mBits: in_flags.bits(),
                },
            );
        }
    }

    /// Read the BaseFlags of this object
    pub fn get_base_flags(&self) -> BitFlags<BaseFlag> {
        let flags = unsafe { PxBase_getBaseFlags(self.get_raw()) };
        unsafe { BitFlags::new(flags.mBits) }
    }

    ////////////////////////////////////////////////////////////////////////////////

    /// Returns true if this object can be released, i.e., it is not subordinate.
    pub fn is_releasable(&self) -> bool {
        unsafe { PxBase_isReleasable(self.get_raw()) }
    }

    /// Checks if the concrete type of this object matches the string. N.B: This
    /// is NOT equivalent to the PhysX `is_kind_of`, which accounts for derived
    /// types. This function does exact matching.
    pub fn is_type(&self, name: &str) -> bool {
        self.get_concrete_type_name()
            .map(|n| n == name)
            .unwrap_or(false)
    }

    /// Checks if the concrete type of this object matches the string. N.B: This
    /// is NOT equivalent to the PhysX `is_kind_of`, which accounts for derived
    /// types. This function does exact matching.
    pub fn is_type_enum(&self, _type: ConcreteType) -> bool {
        self.get_concrete_type() == _type
    }
}