1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
// phf_mut – Perfectly hashed mutable containers
// Copyright (C) 2017  Ben Wiederhake
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

//! Perfectly hashed mutable containers.

extern crate bit_vec;

use std::fmt;
use std::ops::{Index, IndexMut};

#[cfg(test)]
mod tests;

/// The perfect hash function to be used in all further constructions.
pub trait PerfectHash {
    type K;
    fn hash(&self, k: Self::K) -> usize;
    fn size(&self) -> usize;
}

/// Inverse operation of the perfect hash function.
/// This is necessary for all operations that *generate* key values,
/// for example iteration.
pub trait HashInverse: PerfectHash {
    fn invert(&self, hash: usize) -> Self::K;

    /// Create a new iterator over the hash domain.
    fn iter(&self) -> KeyIter<Self> {
        KeyIter { next: 0, hash: self }
    }
}

/// Iterator over the domain of a `PerfectHash`.
pub struct KeyIter<'a, H: ?Sized + 'a> {
    hash: &'a H,
    next: usize,
}

impl<'a, H: HashInverse> Iterator for KeyIter<'a, H> {
    type Item = H::K;

    fn next(&mut self) -> Option<Self::Item> {
        let size = self.hash.size();
        if self.next == size {
            self.next = 0;
            None
        } else {
            let idx = self.next;
            self.next += 1;
            Some(self.hash.invert(idx))
        }
    }
}

/// A mutable, perfectly-hashed map.  Note that a `Map` is always full,
/// so you might prefer `std::collections::HashMap` for sparse maps.
pub struct Map<V, H> {
    hash: H,
    backing: Box<[V]>,
}

impl<V: Default, H: PerfectHash> Map<V, H> {
    /// Create a new `Map` full default values.
    /// Also see `from_initial` and `from_element`.
    pub fn new(hash: H) -> Self {
        let size = hash.size();
        let mut vec: Vec<V> = Vec::with_capacity(size);
        for _ in 0..size {
            vec.push(V::default());
        }
        Map {
            hash: hash,
            backing: vec.into_boxed_slice(),
        }
    }
}

impl<V: Clone, H: PerfectHash> Map<V, H> {
    /// Create a new `Map` full of copies of some value.
    /// Also see `from_initial` and `new`.
    pub fn from_element(hash: H, value: &V) -> Self {
        let size = hash.size();
        let mut vec: Vec<V> = Vec::with_capacity(size);
        for _ in 0..size {
            vec.push(value.clone());
        }
        Map {
            hash: hash,
            backing: vec.into_boxed_slice(),
        }
    }
}

impl<V, H: HashInverse> Map<V, H> {
    /// Directly create a new iterator over entries:
    /// `Iterator<Item=(K,&V)>`.
    pub fn iter(&self) -> MapIter<H, V> {
        MapIter {
            backing: self.backing.iter(),
            hash: &self.hash,
            pos: 0,
        }
    }

    /// Directly create a new iterator over mutable entries:
    /// `Iterator<Item=(K,&mut V)>`.
    pub fn iter_mut(&mut self) -> MapIterMut<H, V> {
        MapIterMut {
            backing: self.backing.iter_mut(),
            hash: &self.hash,
            pos: 0,
        }
    }
}

impl<'a, V, H: HashInverse> IntoIterator for &'a Map<V, H> {
    type Item = (H::K, &'a V);
    type IntoIter = MapIter<'a, H, V>;

    fn into_iter(self) -> Self::IntoIter {
        self.iter()
    }
}

impl<'a, V, H: HashInverse> IntoIterator for &'a mut Map<V, H> {
    type Item = (H::K, &'a mut V);
    type IntoIter = MapIterMut<'a, H, V>;

    fn into_iter(self) -> Self::IntoIter {
        self.iter_mut()
    }
}

pub struct MapIter<'a, H: 'a, V: 'a> {
    // TODO: Sub-optimal approach.  Now the position is saved twice.
    backing: std::slice::Iter<'a, V>,
    hash: &'a H,
    pos: usize,
}

impl<'a, H: HashInverse, V: 'a> Iterator for MapIter<'a, H, V> {
    type Item = (H::K, &'a V);

    fn next(&mut self) -> Option<Self::Item> {
        self.backing.next().map(|value| {
            let key = self.hash.invert(self.pos);
            self.pos += 1;
            (key, value)
        })
    }
}

pub struct MapIterMut<'a, H: 'a, V: 'a> {
    // TODO: Sub-optimal approach.  Now the position is saved twice.
    backing: std::slice::IterMut<'a, V>,
    hash: &'a H,
    pos: usize,
}

impl<'a, H: HashInverse, V: 'a> Iterator for MapIterMut<'a, H, V> {
    type Item = (H::K, &'a mut V);

    fn next(&mut self) -> Option<Self::Item> {
        self.backing.next().map(|value| {
            let key = self.hash.invert(self.pos);
            self.pos += 1;
            (key, value)
        })
    }
}

impl<V, H: PerfectHash> Map<V, H> {
    /// Create a new `Map` from a given vector of values.
    /// The vector must be compatible to the PerfectHash.
    /// Also see `new` and `from_element`.
    pub fn from_initial(hash: H, init: Vec<V>) -> Self {
        let size = hash.size();
        assert_eq!(size, init.len());
        Map {
            hash: hash,
            backing: init.into_boxed_slice(),
        }
    }

    /// Overwrite the currently stored value for key `k` by `v`.
    /// The name `insert` is s homage to `HashMap::insert`.
    pub fn insert(&mut self, k: H::K, v: V) {
        self.backing[self.hash.hash(k)] = v;
    }

    /// Swaps the currently stored value for key `k` with `v`,
    /// so the old value is now stored in `v`.
    pub fn swap(&mut self, k: H::K, v: &mut V) {
        std::mem::swap(&mut self.backing[self.hash.hash(k)], v);
    }

    /// Directly get a reference the value for key `k`.
    /// Also see the `Index` implementation.
    pub fn get(&self, k: H::K) -> &V {
        &self.backing[self.hash.hash(k)]
    }

    /// Directly get a mutable reference the value for key `k`.
    /// Also see the `Index` implementation.
    pub fn get_mut(&mut self, k: H::K) -> &mut V {
        &mut self.backing[self.hash.hash(k)]
    }
}

impl<V, H> Map<V, H> {
    /// Returns true if the map contains no elements.
    pub fn is_empty(&self) -> bool {
        self.backing.is_empty()
    }

    /// Returns the amount of entries,
    /// which is always equal to the hasher's domain (i.e., `hasher.size()`).
    pub fn len(&self) -> usize {
        self.backing.len()
    }

    /// Directly create a new iterator over the values:
    /// `Iterator<Item=&V>`.
    pub fn values(&self) -> std::slice::Iter<V> {
        self.backing.iter()
    }

    /// Directly create a new iterator over the mutable values:
    /// `Iterator<Item=&mut V>`.
    pub fn values_mut(&mut self) -> std::slice::IterMut<V> {
        self.backing.iter_mut()
    }
}

impl<V, H> fmt::Debug for Map<V, H>
    where V: fmt::Debug
{
    fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
        write!(fmt, "{:?}", &*self.backing)
    }
}

impl<V: Clone, H: Clone> Clone for Map<V, H> {
    fn clone(&self) -> Self { Self {
        hash: self.hash.clone(),
        backing: self.backing.clone(),
    }}
}

impl<V, H: PerfectHash> Index<H::K> for Map<V, H> {
    type Output = V;

    fn index(&self, k: H::K) -> &V {
        self.get(k)
    }
}

impl<V, H: PerfectHash> IndexMut<H::K> for Map<V, H> {
    fn index_mut(&mut self, k: H::K) -> &mut V {
        self.get_mut(k)
    }
}

/// A mutable, perfectly-hashed set.  Note that a small domain is recommended.
/// For sparse sets, you might prefer `std::collections::HashSet`.
pub struct Set<H> {
    hash: H,
    backing: bit_vec::BitVec,
}

impl<H: PerfectHash> Set<H> {
    /// Create a new, empty set.
    pub fn new(hash: H) -> Self {
        let size = hash.size();
        Set {
            hash: hash,
            backing: bit_vec::BitVec::from_elem(size, false),
        }
    }

    /// Insert a key into the set, so that `contains`
    /// for an equal key returns `true` in the future.
    /// Returns whether this key already was in the set.
    pub fn insert(&mut self, k: H::K) -> bool {
        let idx = self.hash.hash(k);
        let ret = self.backing.get(idx).unwrap();
        self.backing.set(idx, true);
        ret
    }

    /// Erases a key from the set, so that `contains`
    /// for an equal key returns `false` in the future.
    /// Returns whether this key already was in the set.
    pub fn erase(&mut self, k: H::K) -> bool {
        let idx = self.hash.hash(k);
        let ret = self.backing.get(idx).unwrap();
        self.backing.set(idx, false);
        ret
    }

    fn has(&self, index: usize) -> bool {
        self.backing.get(index).unwrap()
    }

    /// Returns whether the key is in the set.
    pub fn contains(&self, k: H::K) -> bool {
        let idx = self.hash.hash(k);
        self.has(idx)
    }

    pub fn is_empty(&self) -> bool {
        !self.backing.any()
    }

    pub fn is_full(&self) -> bool {
        self.backing.all()
    }
}

impl<H: HashInverse> Set<H> {
    /// Create an iterator over the contained keys.
    pub fn iter(&self) -> SetIter<H> {
        SetIter {
            next: self.backing.len(),
            set: self,
        }
    }
}

impl<'a, H: HashInverse> IntoIterator for &'a Set<H> {
    type Item = H::K;
    type IntoIter = SetIter<'a, H>;

    fn into_iter(self) -> SetIter<'a, H> {
        self.iter()
    }
}

impl<H: PerfectHash + Default> Default for Set<H> {
    fn default() -> Self {
        Self::new(H::default())
    }
}

impl<H: Clone> Clone for Set<H> {
    fn clone(&self) -> Self { Self {
        hash: self.hash.clone(),
        backing: self.backing.clone(),
    }}
}

pub struct SetIter<'a, H: PerfectHash + 'a> {
    next: usize,
    set: &'a Set<H>,
}

impl<'a, H: HashInverse> Iterator for SetIter<'a, H> {
    type Item = H::K;

    fn next(&mut self) -> Option<Self::Item> {
        let size = self.set.hash.size();
        if self.next == size {
            /* Fresh start, or wrapped. */
            self.next = 0;
        } else {
            self.next += 1;
        }
        while self.next < size && !self.set.has(self.next) {
            self.next += 1;
        }
        if self.next == size {
            None
        } else {
            Some(self.set.hash.invert(self.next))
        }
    }
}