1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
use std::hash::Hash;
use binout::{VByte, Serializer, AsIs};
use bitm::{BitAccess, Rank, ceiling_div};

use crate::utils::{ArrayWithRank, read_bits};
use crate::{BuildDefaultSeededHasher, BuildSeededHasher, stats};

use super::Bits8;
use super::function::{from_mut_slice, get_mut_slice};
use super::goindexing::{GroupSize, SeedSize, TwoToPowerBitsStatic};
use std::io;
use std::sync::atomic::AtomicU64;
use dyn_size_of::GetSize;
use crate::fmph::function::{fphash_add_bit, fphash_remove_collided, fphash_sync_add_bit};
use crate::fmph::goindexing::group_nr;

use rayon::prelude::*;
use crate::fmph::keyset::{KeySet, SliceMutSource, SliceSourceWithRefs};

/// Configuration of family of (group-optimized) hash functions used by [`GOFunction`] and accepted by [`GOBuildConf`] constructors.
/// 
/// Good configurations can be obtained by calling one of the following functions:
/// [default_biggest](GOConf::default_biggest), [default_bigger](GOConf::default_bigger),
/// [default](GOConf::default), [default_smallest](GOConf::default_smallest).
/// These functions are listed in order of increasing performance (in terms of size and evaluation speed)
/// and time to construct the minimum perfect hash function.
/// More details are included in their documentation and the paper:
/// P. Beling, *Fingerprinting-based minimal perfect hashing revisited*, ACM Journal of Experimental Algorithmics, 2023, <https://doi.org/10.1145/3596453>
#[derive(Clone)]
pub struct GOConf<GS: GroupSize = TwoToPowerBitsStatic::<4>, SS: SeedSize = TwoToPowerBitsStatic<2>, S = BuildDefaultSeededHasher> {
    /// The family of hash functions used by the constructed [`GOFunction`]. (default: [`BuildDefaultSeededHasher`])
    pub hash_builder: S,
    /// Size of seeds (in bits). (default: 4)
    pub bits_per_seed: SS,
    /// Size of groups (in bits). (default: 16)
    pub bits_per_group: GS
}

impl GOConf<TwoToPowerBitsStatic::<3>, TwoToPowerBitsStatic::<0>, BuildDefaultSeededHasher> {
    /// Creates a configuration in which the seed and group sizes are 1 and 8 bits respectively,
    /// which (when relative level size is 100) leads to a minimum perfect hash function whose:
    /// - size is about 2.52 bits per input key,
    /// - the expected number of levels visited during the evaluation is about 2.18,
    /// - construction takes about 4 times less time compared to the [default](GOConf::default) configuration.
    pub fn default_biggest() -> Self {
        Self {
            hash_builder: Default::default(),
            bits_per_seed: Default::default(),
            bits_per_group: Default::default()
        }
    }
}

impl GOConf<TwoToPowerBitsStatic::<4>, TwoToPowerBitsStatic::<1>, BuildDefaultSeededHasher> {
    /// Creates a configuration in which the seed and group sizes are 2 and 16 bits respectively,
    /// which (when relative level size is 100) leads to a minimum perfect hash function whose:
    /// - size is about 2.36 bits per input key,
    /// - the expected number of levels visited during the evaluation is about 2.04,
    /// - construction takes about 3 times less time compared to the [default](GOConf::default) configuration.
    pub fn default_bigger() -> Self {
        Self {
            hash_builder: Default::default(),
            bits_per_seed: Default::default(),
            bits_per_group: Default::default()
        }
    }
}

impl Default for GOConf {
    /// Creates a configuration in which the seed and group sizes are 4 and 16 bits respectively,
    /// which (when relative level size is 100) leads to a minimum perfect hash function whose:
    /// - size is about 2.21 bits per input key,
    /// - the expected number of levels visited during the evaluation is about 1.73.
    fn default() -> Self {
        Self {
            hash_builder: Default::default(),
            bits_per_seed: Default::default(),
            bits_per_group: Default::default()
        }
    }
}

impl GOConf<TwoToPowerBitsStatic::<5>, Bits8, BuildDefaultSeededHasher> {
    /// Creates a configuration in which the seed and group sizes are 8 and 32 bits respectively,
    /// which (when relative level size is 100) leads to a minimum perfect hash function whose:
    /// - size is about 2.10 bits per input key,
    /// - the expected number of levels visited during the evaluation is about 1.64,
    /// - construction takes about 13 times longer compared to the [default](GOConf::default) configuration.
    pub fn default_smallest() -> Self {
        Self {
            hash_builder: Default::default(),
            bits_per_seed: Default::default(),
            bits_per_group: Default::default()
        }
    }
}

impl<GS: GroupSize, SS: SeedSize> GOConf<GS, SS> {
    /// Returns a configuration that uses seeds and groups of the sizes given in bits.
    pub fn bps_bpg(bits_per_seed: SS, bits_per_group: GS) -> Self {
        Self {
            hash_builder: Default::default(),
            bits_per_seed,
            bits_per_group,
        }
    }
}

impl<GS: GroupSize, SS: SeedSize, S: BuildSeededHasher> GOConf<GS, SS, S> {
    /// Panics if the configuration is incorrect.
    pub fn validate(&self) {
        self.bits_per_seed.validate().unwrap();
        self.bits_per_group.validate().unwrap();
    }

    /// Returns a configuration that uses given family of hash functions and seeds and groups of the sizes given in bits.
    pub fn hash_bps_bpg(hash_builder: S, bits_per_seed: SS, bits_per_group: GS) -> Self {
        Self { hash_builder, bits_per_seed, bits_per_group }  // 1<<6=64
    }

    /// Returns array index for given `hash` of key, size of level in groups, and group seed provided by `group_seed`.
    #[inline(always)] pub fn hash_index<GetGroupSeed>(&self, hash: u64, level_size_groups: u64, group_seed: GetGroupSeed) -> usize
        where GetGroupSeed: FnOnce(u64) -> u16  // returns group seed for group with given index
    {
        let group = group_nr(hash, level_size_groups);
        self.bits_per_group.bit_index_for_seed(hash, group_seed(group), group)
    }

    /// Returns array index for given `key`, seed and size (in groups) of level, and group seed provided by `group_seed`.
    #[inline(always)] pub fn key_index<GetGroupSeed, K>(&self, key: &K, level_seed: u32, level_size_groups: u64, group_seed: GetGroupSeed) -> usize
        where GetGroupSeed: FnOnce(u64) -> u16, K: Hash
    {
        self.hash_index(self.hash_builder.hash_one(key, level_seed), level_size_groups, group_seed)
    }

    /// Returns fingerprint array for given hashes of keys, level size, and group seeds (given as a function that returns seeds for provided group indices).
    fn build_array_for_hashes(&self, key_hashes: &[u64], level_size_segments: usize, level_size_groups: u64, group_seed: u16) -> Box<[u64]>
    {
        let mut result = vec![0u64; level_size_segments].into_boxed_slice();
        let mut collision = vec![0u64; level_size_segments].into_boxed_slice();
        for hash in key_hashes {
            fphash_add_bit(&mut result, &mut collision, self.hash_index(*hash, level_size_groups, |_| group_seed));
        };
        fphash_remove_collided(&mut result, &collision);
        result
    }
}

impl<GS: GroupSize + Sync, SS: SeedSize, S: BuildSeededHasher + Sync> GOConf<GS, SS, S> {
    /// Returns fingerprint array for given hashes of keys, level size, and group seeds (given as a function that returns seeds for provided group indices).
    fn build_array_for_hashes_mt(&self, key_hashes: &[u64], level_size_segments: usize, level_size_groups: u64, group_seed: u16) -> Box<[u64]>
    {
        let mut result = vec![0u64; level_size_segments].into_boxed_slice();
        let result_atom = from_mut_slice(&mut result);
        let mut collision: Box<[AtomicU64]> = (0..level_size_segments).map(|_| AtomicU64::default()).collect();
        key_hashes.par_iter().for_each(
            |hash| fphash_sync_add_bit(&result_atom, &collision, self.hash_index(*hash, level_size_groups, |_| group_seed))
        );
        fphash_remove_collided(&mut result, get_mut_slice(&mut collision));
        result
    }
}

/// Build configuration that is accepted by [`GOFunction`] constructors.
///
/// See field descriptions for details.
#[derive(Clone)]
pub struct GOBuildConf<GS: GroupSize = TwoToPowerBitsStatic::<4>, SS: SeedSize = TwoToPowerBitsStatic<2>, S = BuildDefaultSeededHasher> {
    /// The threshold for the number of keys below which their hashes will be cached during level construction.
    /// (default: [`GOBuildConf::DEFAULT_CACHE_THRESHOLD`])
    /// 
    /// Caching speeds up level construction at the expense of memory consumption during construction
    /// (caching a single key requires 8 bytes of memory).
    /// Caching is particularly recommended for keys with complex types whose hashing is slow.
    /// It is possible to use a value of `0` to disable caching completely, or [`usize::MAX`] to use it on all levels.
    pub cache_threshold: usize,

    /// Size of each level given as a percentage of the number of level input keys. (default: `100`)
    /// 
    /// A value of 100 minimizes the size of the constructed minimum perfect hash function.
    /// Larger values speed up evaluation at the expense of increased size.
    /// It does not make sense to use values below 100.
    pub relative_level_size: u16,

    /// Whether to use multiple threads during construction. (default: `true`)
    /// 
    /// If `true`, the construction will be performed using the default [rayon] thread pool.
    pub use_multiple_threads: bool,

    /// Configuration of family of (group-optimized) hash functions (default: [`GOConf::default`]).
    pub goconf: GOConf<GS, SS, S>,
}   // TODO introduce trait to make other builders possible

impl Default for GOBuildConf {
    fn default() -> Self { Self::new(Default::default()) }
}

impl<GS: GroupSize + Sync, SS: SeedSize, S: BuildSeededHasher + Sync> From<GOConf<GS, SS, S>> for GOBuildConf<GS, SS, S> {
    #[inline] fn from(value: GOConf<GS, SS, S>) -> Self { Self::new(value) }
}

impl<GS: GroupSize + Sync, SS: SeedSize, S: BuildSeededHasher + Sync> GOBuildConf<GS, SS, S>
{
    /// The default value for [`relative_level_size`](GOBuildConf::relative_level_size),
    /// which results in building the cache with a maximum size of 1GB.
    pub const DEFAULT_CACHE_THRESHOLD: usize = 1024*1024*128; // *8 bytes = max 1GB for pre-hashing

    /// Returns configuration with custom [group-optimized family of hash functions](GOBuildConf::goconf),
    /// [relative level size](GOBuildConf::relative_level_size), [cache threshold](GOBuildConf::cache_threshold)
    /// and potentially enabled [multiple threads](GOBuildConf::use_multiple_threads).
    pub fn with_lsize_ct_mt(goconf: GOConf<GS, SS, S>, relative_level_size: u16, cache_threshold: usize, use_multiple_threads: bool) -> Self {
        Self {
            cache_threshold,
            relative_level_size,
            use_multiple_threads,
            goconf
        }
    }

    /// Returns configuration with custom [group-optimized family of hash functions](GOBuildConf::goconf).
    pub fn new(goconf: GOConf<GS, SS, S>) -> Self {
        Self::with_lsize_ct_mt(goconf, 100, Self::DEFAULT_CACHE_THRESHOLD, true)
    }

    /// Returns configuration with custom [group-optimized family of hash functions](GOBuildConf::goconf)
    /// and [cache threshold](GOBuildConf::cache_threshold).
    pub fn with_ct(goconf: GOConf<GS, SS, S>, cache_threshold: usize) -> Self {
        Self::with_lsize_ct_mt(goconf, 100, cache_threshold, true)
    }

    /// Returns configuration with custom [group-optimized family of hash functions](GOBuildConf::goconf),
    /// [relative level size](GOBuildConf::relative_level_size) and [cache threshold](GOBuildConf::cache_threshold).
    pub fn with_lsize_ct(goconf: GOConf<GS, SS, S>, relative_level_size: u16, cache_threshold: usize) -> Self {
        Self::with_lsize_ct_mt(goconf, relative_level_size, cache_threshold, true)
    }

    /// Returns configuration with custom [group-optimized family of hash functions](GOBuildConf::goconf)
    /// and [relative level size](GOBuildConf::relative_level_size).
    pub fn with_lsize(goconf: GOConf<GS, SS, S>, relative_level_size: u16) -> Self {
        Self::with_lsize_ct_mt(goconf, relative_level_size, Self::DEFAULT_CACHE_THRESHOLD, true)
    }

    /// Returns configuration with custom [group-optimized family of hash functions](GOBuildConf::goconf),
    /// [relative level size](GOBuildConf::relative_level_size)
    /// and potentially enabled [multiple threads](GOBuildConf::use_multiple_threads).
    pub fn with_lsize_mt(goconf: GOConf<GS, SS, S>, relative_level_size: u16, use_multiple_threads: bool) -> Self {
        Self::with_lsize_ct_mt(goconf, relative_level_size, Self::DEFAULT_CACHE_THRESHOLD, use_multiple_threads)
    }

    /// Returns configuration with custom [group-optimized family of hash functions](GOBuildConf::goconf),
    /// and potentially enabled [multiple threads](GOBuildConf::use_multiple_threads).
    pub fn with_mt(goconf: GOConf<GS, SS, S>, use_multiple_threads: bool) -> Self {
        Self::with_lsize_ct_mt(goconf, 100, Self::DEFAULT_CACHE_THRESHOLD, use_multiple_threads)
    }

    #[inline(always)] fn last_seed(&self) -> u16 { ((1u32 << self.goconf.bits_per_seed.into())-1) as u16 }

    /// Update `best_array` and `best_seeds` copying groups that are better (have more ones in `array`) from `array` and `array_seed`.
    fn update_best<GetGroupSeed>(&self, level_size_groups: u64, best_array: &mut [u64], best_seeds: &mut [SS::VecElement], array: &[u64], array_seed: GetGroupSeed)
        where GetGroupSeed: Fn(u64) -> u16
    {
        for group_index in 0..level_size_groups {
            self.goconf.bits_per_group.copy_group_if_better(best_array, array, group_index as usize,
                || self.goconf.bits_per_seed.set_seed(best_seeds, group_index as usize, array_seed(group_index))
            )
        }
    }

    /// Build (by calling `build_for_group`) arrays for all group seeds sequentially and select best groups and seeds (which are returned).
    /// `build_for_group` can use multiple threads internally to build each array.
    #[inline(always)]
    fn best_array<AB>(&self, build_for_group: AB, level_size_groups: u64) -> (Box<[u64]>, Box<[SS::VecElement]>)
        where AB: Fn(u16) -> Box<[u64]> // build array for given group nr
    {
        let mut best_array = build_for_group(0);
        let mut best_seeds = self.goconf.bits_per_seed.new_zeroed_seed_vec(level_size_groups as usize);
        for group_seed in 1..=self.last_seed() {
            let with_new_seed = build_for_group(group_seed);
            self.update_best(level_size_groups, &mut best_array, &mut best_seeds, &with_new_seed, |_| group_seed);
        }
        (best_array, best_seeds)
    }
}

/// Helper structure for building fingerprinting-based minimal perfect hash function with group optimization (FMPHGO, [`GOFunction`]).
pub struct GOBuilder<GS: GroupSize = TwoToPowerBitsStatic::<4>, SS: SeedSize = TwoToPowerBitsStatic<2>, S = BuildDefaultSeededHasher> {
    level_sizes: Vec::<u64>,
    arrays: Vec::<Box<[u64]>>,
    group_seeds: Vec::<Box<[SS::VecElement]>>,
    conf: GOBuildConf<GS, SS, S>
}   // TODO introduce trait to make other builders possible

impl<GS: GroupSize + Sync, SS: SeedSize, S: BuildSeededHasher + Sync> GOBuilder<GS, SS, S>
{
    pub fn new(mut conf: GOBuildConf<GS, SS, S>) -> Self {
        conf.goconf.validate();
        if conf.use_multiple_threads { conf.use_multiple_threads = rayon::current_num_threads() > 1; }
        Self {
            level_sizes: Vec::<u64>::new(),
            arrays: Vec::<Box<[u64]>>::new(),
            group_seeds: Vec::<Box<[SS::VecElement]>>::new(),
            conf
        }
    }

    fn push(&mut self, array: Box<[u64]>, seeds: Box<[SS::VecElement]>, size_groups: u64) {
        self.arrays.push(array);
        self.group_seeds.push(seeds);
        self.level_sizes.push(size_groups);
    }

    /// Returns number the level about to build (number of levels built so far).
    #[inline(always)] fn level_nr(&self) -> u32 { self.level_sizes.len() as u32 }

    /// Returns whether `key` is retained (`false` if it is already hashed at the levels built so far).
    fn retained<K>(&self, key: &K) -> bool where K: Hash {
        self.arrays.iter().zip(self.group_seeds.iter()).zip(self.level_sizes.iter()).enumerate()
            .all(|(level_seed, ((a, seeds), level_size_groups))| {
                !a.get_bit(self.conf.goconf.key_index(key, level_seed as u32, *level_size_groups,
                |group| self.conf.goconf.bits_per_seed.get_seed(seeds, group as usize)))
            })
    }

    /// Returns fingerprint array for given keys, level size, and group seeds (given as a function that returns seeds for provided group indices).
    #[inline(always)]
    fn build_array<KS, K>(&self, keys: &KS, level_size_segments: usize, level_size_groups: u64, group_seed: u16) -> Box<[u64]>
        where   // returns group seed for group with given index
            K: Hash, KS: KeySet<K>
    {
        let mut result = vec![0u64; level_size_segments].into_boxed_slice();
        let mut collision = vec![0u64; level_size_segments].into_boxed_slice();
        let level_seed = self.level_nr();
        keys.for_each_key(|key| fphash_add_bit(&mut result, &mut collision, self.conf.goconf.key_index(key, level_seed, level_size_groups, |_| group_seed)),
                          |key| self.retained(key));
        fphash_remove_collided(&mut result, &collision);
        result
    }

    /// Returns fingerprint array for given hashes of keys, level size, and group seeds (given as a function that returns seeds for provided group indices).
    #[inline(always)]
    fn build_array_mt<KS, K>(&self, keys: &KS, level_size_segments: usize, level_size_groups: u64, group_seed: u16) -> Box<[u64]>
        where K: Hash, KS: KeySet<K>  // returns group seed for group with given index
    {
        if !keys.has_par_for_each_key() {
            return self.build_array(keys, level_size_segments, level_size_groups, group_seed);
        }
        let mut result = vec![0u64; level_size_segments as usize].into_boxed_slice();
        let result_atom = from_mut_slice(&mut result);
        let mut collision: Box<[AtomicU64]> = (0..level_size_segments).map(|_| AtomicU64::default()).collect();
        let level_seed = self.level_nr();
        keys.par_for_each_key(
            |key| fphash_sync_add_bit(&result_atom, &collision, self.conf.goconf.key_index(key, level_seed, level_size_groups, |_| group_seed)),
            |key| self.retained(key)
        );
        fphash_remove_collided(&mut result, get_mut_slice(&mut collision));
        result
    }

    fn build_next_level_with_cache<KS, K>(&mut self, keys: &mut KS, level_size_groups: u64, level_size_segments: usize)
        where K: Hash + Sync, KS: KeySet<K> + Sync
    {
        let level_seed = self.level_nr();
        let key_hashes = keys.maybe_par_map_each_key(
            |k| self.conf.goconf.hash_builder.hash_one(k, level_seed),
            |key| self.retained(key),
            self.conf.use_multiple_threads
        );
        let (array, seeds) = if self.conf.use_multiple_threads {
            self.conf.best_array(|g| self.conf.goconf.build_array_for_hashes_mt(&key_hashes, level_size_segments, level_size_groups, g), level_size_groups)
        } else {
            self.conf.best_array(|g| self.conf.goconf.build_array_for_hashes(&key_hashes, level_size_segments, level_size_groups, g), level_size_groups)
        };
        keys.maybe_par_retain_keys_with_indices(
            |i| !array.get_bit(
                self.conf.goconf.hash_index(key_hashes[i], level_size_groups,
                                     |group| self.conf.goconf.bits_per_seed.get_seed(&seeds, group as usize))
            ),
            |key| !array.get_bit(
                self.conf.goconf.key_index(key, level_seed, level_size_groups,
                                    |group| self.conf.goconf.bits_per_seed.get_seed(&seeds, group as usize))
            ),
            |key| self.retained(key),
            || array.count_bit_ones(),
            self.conf.use_multiple_threads
        );
        self.push(array, seeds, level_size_groups);
    }

    /// Returns true after successful building.
    fn build_levels<KS, K, BS>(&mut self, keys: &mut KS, stats: &mut BS) -> bool
    where K: Hash + Sync, KS: KeySet<K> + Sync, BS: stats::BuildStatsCollector
    {
        let mut levels_without_reduction = 0;   // number of levels without any reduction in number of the keys
        let mut input_size = keys.keys_len();
        while input_size != 0 {
            let (level_size_groups, level_size_segments) = self.conf.goconf.bits_per_group.level_size_groups_segments(
                ceiling_div(input_size * self.conf.relative_level_size as usize, 100));
            //let seed = level_nr;
            stats.level(input_size, level_size_segments * 64);
            let level_size_groups = level_size_groups as u64;
            if input_size < self.conf.cache_threshold {
                self.build_next_level_with_cache(keys, level_size_groups, level_size_segments);
            } else {
                // build level without hash caching:
                let (array, seeds) = if self.conf.use_multiple_threads {
                    self.conf.best_array(|g| self.build_array_mt(keys, level_size_segments, level_size_groups, g), level_size_groups)
                } else {
                    self.conf.best_array(|g| self.build_array(keys, level_size_segments, level_size_groups, g), level_size_groups)
                };
                let level_nr = self.level_nr();
                keys.maybe_par_retain_keys(
                    |key| {
                        let hash = self.conf.goconf.hash_builder.hash_one(key, level_nr);
                        let group = group_nr(hash, level_size_groups);
                        let bit_index = self.conf.goconf.bits_per_group.bit_index_for_seed(
                            hash,
                            //current_seeds.get_fragment(group as usize, conf.bits_per_group_seed) as u16,
                            self.conf.goconf.bits_per_seed.get_seed(&seeds, group as usize),
                            group);
                        !array.get_bit(bit_index)
                    },
                    |key| self.retained(key),
                    || array.count_bit_ones(),
                    self.conf.use_multiple_threads
                );
                self.push(array, seeds, level_size_groups);
            }
            let prev_input_size = input_size;
            input_size = keys.keys_len();
            if input_size == prev_input_size {
                levels_without_reduction += 1;
                if levels_without_reduction == 10 {
                    let len = self.arrays.len()-levels_without_reduction;
                    self.arrays.truncate(len);
                    self.group_seeds.truncate(len);
                    self.level_sizes.truncate(len);
                    stats.end(input_size);
                    return false;
                }
            } else {
                levels_without_reduction = 0;
            }
        }
        stats.end(0);
        return true;
    }

    pub fn finish(self) -> GOFunction<GS, SS, S> {
        let (array, _)  = ArrayWithRank::build(self.arrays.concat().into_boxed_slice());
        let group_seeds_concatenated = self.conf.goconf.bits_per_seed.concatenate_seed_vecs(&self.level_sizes, self.group_seeds);
        GOFunction::<GS, SS, S> {
            array,
            group_seeds: group_seeds_concatenated,
            conf: self.conf.goconf,
            level_sizes: self.level_sizes.into_boxed_slice(),
        }
    }
}

/// Fingerprinting-based minimal perfect hash function with group optimization (FMPHGO).
///
/// See:
/// - P. Beling, *Fingerprinting-based minimal perfect hashing revisited*, ACM Journal of Experimental Algorithmics, 2023, <https://doi.org/10.1145/3596453>
pub struct GOFunction<GS: GroupSize = TwoToPowerBitsStatic::<4>, SS: SeedSize = TwoToPowerBitsStatic<2>, S = BuildDefaultSeededHasher> {
    array: ArrayWithRank,
    group_seeds: Box<[SS::VecElement]>,   //  Box<[u8]>,
    level_sizes: Box<[u64]>, // number of groups
    conf: GOConf<GS, SS, S>
    // 0..01..1 mask with number of ones = group size (in bits)
    //group_size_mask: u8,
}

impl<GS: GroupSize, SS: SeedSize, S: BuildSeededHasher> GetSize for GOFunction<GS, SS, S> {
    fn size_bytes_dyn(&self) -> usize {
        self.array.size_bytes_dyn()
            //+ self.seeds.len() * std::mem::size_of::<u8>()
            + self.group_seeds.size_bytes_dyn()
            + self.level_sizes.size_bytes_dyn()
    }

    const USES_DYN_MEM: bool = true;
}

impl<GS: GroupSize, SS: SeedSize, S: BuildSeededHasher> GOFunction<GS, SS, S> {

    /// Gets the value associated with the given `key` and reports statistics to `access_stats`.
    /// 
    /// The returned value is in the range: `0` (inclusive), the number of elements in the input key collection (exclusive).
    /// If the `key` was not in the input key collection given during construction,
    /// either [`None`] or an undetermined value from the specified range is returned.
    pub fn get_stats<K: Hash + ?Sized, A: stats::AccessStatsCollector>(&self, key: &K, access_stats: &mut A) -> Option<u64> {
        let mut groups_before = 0u64;
        let mut level_nr = 0u32;
        loop {
            let level_size_groups = *self.level_sizes.get(level_nr as usize)?;
            /*let bit_index = self.conf.key_index(key, level_nr, level_size_groups,
                                                |g| self.conf.bits_per_seed.get_seed(&self.group_seeds, (groups_before + g) as usize)
            ); // wrong as bit_index_for_seed is called with wrong group */
            let hash = self.conf.hash_builder.hash_one(key, level_nr);
            let group = groups_before + group_nr(hash, level_size_groups);
            let seed = self.conf.bits_per_seed.get_seed(&self.group_seeds, group as usize);
            let bit_index = self.conf.bits_per_group.bit_index_for_seed(hash, seed, group);
            if self.array.content.get_bit(bit_index) {
                access_stats.found_on_level(level_nr);
                return Some(unsafe{self.array.rank_unchecked(bit_index)} as u64);
            }
            groups_before += level_size_groups;
            level_nr += 1;
        }
    }

    /// Gets the value associated with the given `key`.
    /// 
    /// The returned value is in the range: `0` (inclusive), the number of elements in the input key collection (exclusive).
    /// If the `key` was not in the input key collection given during construction,
    /// either [`None`] or an undetermined value from the specified range is returned.
    #[inline] pub fn get<K: Hash + ?Sized>(&self, key: &K) -> Option<u64> {
        self.get_stats(key, &mut ())
    }

    /// Gets the value associated with the given `key` and reports statistics to `access_stats`.
    /// 
    /// The returned value is in the range: `0` (inclusive), the number of elements in the input key collection (exclusive).
    /// If the `key` was not in the input key collection given during construction,
    /// it either panics or returns an undetermined value from the specified range.
    #[inline] pub fn get_stats_or_panic<K: Hash + ?Sized, A: stats::AccessStatsCollector>(&self, key: &K, access_stats: &mut A) -> u64 {
        self.get_stats(key, access_stats).expect("Invalid access to an item outside the set given during construction.")
    }

    /// Gets the value associated with the given `key` and reports statistics to `access_stats`.
    /// 
    /// The returned value is in the range: `0` (inclusive), the number of elements in the input key collection (exclusive).
    /// If the `key` was not in the input key collection given during construction,
    /// it either panics or returns an undetermined value from the specified range.
    #[inline] pub fn get_or_panic<K: Hash + ?Sized>(&self, key: &K) -> u64 {
        self.get_stats_or_panic(key, &mut ())
    }

    /// Returns number of bytes which `write` will write.
    pub fn write_bytes(&self) -> usize {
        self.conf.bits_per_group.write_size_bytes()
            + VByte::array_size(&self.level_sizes)
            + AsIs::array_content_size(&self.array.content)
            + std::mem::size_of::<u8>() + self.group_seeds.size_bytes_content_dyn()
    }

    /// Writes `self` to the `output`.
    pub fn write(&self, output: &mut dyn io::Write) -> io::Result<()>
    {
        self.conf.bits_per_group.write(output)?;
        VByte::write_array(output, &self.level_sizes)?;
        AsIs::write_all(output, self.array.content.iter())?;
        self.conf.bits_per_seed.write_seed_vec(output, &self.group_seeds)
    }

    /// Reads `Self` from the `input`. Hash builder must be the same as the one used to write.
    pub fn read_with_hasher(input: &mut dyn io::Read, hash_builder: S) -> io::Result<Self>
    {
        let bits_per_group = GS::read(input)?;
        let level_size = VByte::read_array(input)?;
        let number_of_groups = level_size.iter().map(|v|*v as usize).sum::<usize>();

        let array_content = read_bits(input, bits_per_group * number_of_groups)?;
        let (array_with_rank, _) = ArrayWithRank::build(array_content);

        let (bits_per_group_seed, group_seeds) = SS::read_seed_vec(input, number_of_groups)?;

        Ok(Self {
            array: array_with_rank,
            group_seeds,
            level_sizes: level_size,
            conf: GOConf {
                bits_per_seed: bits_per_group_seed,
                bits_per_group,
                hash_builder
            },
        })
    }

    /// Returns sizes of the successive levels.
    pub fn level_sizes(&self) -> &[u64] {
        &self.level_sizes
    }
}

impl<GS: GroupSize + Sync, SS: SeedSize, S: BuildSeededHasher + Sync> GOFunction<GS, SS, S> {
    /// Constructs [`GOFunction`] for given input `keys`,
    /// using the build configuration `conf` and reporting statistics with `stats`.
    /// 
    /// If the construction fails, it returns `Err` with a triple *(f, k, s)*, where:
    /// - *f* is a [`GOFunction`] handling only part of the keys
    ///   (that returns numbers in the interval *[0, s-k.keys_len())*);
    /// - *k* is a set of the remaining keys,
    /// - *s* is the initial number of keys.
    /// If needed, the keys from *k* can be placed in another data structure to handle all the keys.
    /// 
    /// If the construction fails, it is almost certain that the input contains either duplicate keys
    /// or keys indistinguishable by any hash function from the family used.
    /// The duplicate keys will be included in the *k* set.
    pub fn try_with_conf_stats_or_partial<K, KS, BS>(mut keys: KS, conf: GOBuildConf<GS, SS, S>, stats: &mut BS) -> Result<Self, (Self, KS, usize)>
        where K: Hash + Sync, KS: KeySet<K> + Sync, BS: stats::BuildStatsCollector
    {
        let mut builder = GOBuilder::new(conf);
        let initial_size = keys.keys_len();
        if builder.build_levels(&mut keys, stats) {
            drop(keys);
            Ok(builder.finish())
        } else {
            Err((builder.finish(), keys, initial_size))
        }
    }

    /// Constructs [`GOFunction`] for given `keys`, using the build configuration `conf` and reporting statistics with `stats`.
    /// 
    /// [`None`] is returned if the construction fails.
    /// Then it is almost certain that the input contains either duplicate keys
    /// or keys indistinguishable by any hash function from the family used.
    pub fn try_with_conf_stats<K, KS, BS>(mut keys: KS, conf: GOBuildConf<GS, SS, S>, stats: &mut BS) -> Option<Self>
        where K: Hash + Sync, KS: KeySet<K> + Sync, BS: stats::BuildStatsCollector
    {
        let mut builder = GOBuilder::new(conf);
        builder.build_levels(&mut keys, stats).then(|| {
            drop(keys);
            builder.finish()
        })
    }

    /// Builds [`GOFunction`] for given `keys`, using the build configuration `conf` and reporting statistics with `stats`.
    ///
    /// Panics if the construction fails.
    pub fn with_conf_stats<K, KS, BS>(keys: KS, conf: GOBuildConf<GS, SS, S>, stats: &mut BS) -> Self
        where K: Hash + Sync, KS: KeySet<K> + Sync, BS: stats::BuildStatsCollector
    {
        Self::try_with_conf_stats(keys, conf, stats).expect("Constructing fmph::GOFunction failed. Probably the input contains duplicate keys.")
    }

    /// Builds [`GOFunction`] for given `keys`, using the build configuration `conf`.
    ///
    /// Panics if the construction fails.
    /// Then it is almost certain that the input contains either duplicate keys
    /// or keys indistinguishable by any hash function from the family used.
    #[inline] pub fn with_conf<K, KS>(keys: KS, conf: GOBuildConf<GS, SS, S>) -> Self
        where K: Hash + Sync, KS: KeySet<K> + Sync
    {
        Self::with_conf_stats(keys, conf, &mut ())
    }

    /// Builds [`GOFunction`] for given `keys`, using the build configuration `conf` and reporting statistics with `stats`.
    ///
    /// Panics if the construction fails.
    /// Then it is almost certain that the input contains either duplicate keys
    /// or keys indistinguishable by any hash function from the family used.
    #[inline] pub fn from_slice_with_conf_stats<K, BS>(keys: &[K], conf: GOBuildConf<GS, SS, S>, stats: &mut BS) -> Self
        where K: Hash + Sync, BS: stats::BuildStatsCollector
    {
        Self::with_conf_stats(SliceSourceWithRefs::<_, u8>::new(keys), conf, stats)
    }

    /// Builds [`GOFunction`] for given `keys`, using the configuration `conf`.
    ///
    /// Panics if the construction fails.
    /// Then it is almost certain that the input contains either duplicate keys
    /// or keys indistinguishable by any hash function from the family used.
    #[inline] pub fn from_slice_with_conf<K>(keys: &[K], conf: GOBuildConf<GS, SS, S>) -> Self
        where K: Hash + Sync
    {
        Self::with_conf_stats(SliceSourceWithRefs::<_, u8>::new(keys), conf, &mut ())
    }

    /// Builds [`GOFunction`] for given `keys`, using the build configuration `conf` and reporting statistics with `stats`.
    /// Note that `keys` can be reordered during construction.
    /// 
    /// Panics if the construction fails.
    /// Then it is almost certain that the input contains either duplicate keys
    /// or keys indistinguishable by any hash function from the family used.
    #[inline] pub fn from_slice_mut_with_conf_stats<K, BS>(keys: &mut [K], conf: GOBuildConf<GS, SS, S>, stats: &mut BS) -> Self
        where K: Hash + Sync, BS: stats::BuildStatsCollector
    {
        Self::with_conf_stats(SliceMutSource::new(keys), conf, stats)
    }

    /// Builds [`GOFunction`] for given `keys`, using the build configuration `conf`.
    /// Note that `keys` can be reordered during construction.
    /// 
    /// Panics if the construction fails.
    /// Then it is almost certain that the input contains either duplicate keys
    /// or keys indistinguishable by any hash function from the family used.
    #[inline] pub fn from_slice_mut_with_conf<K>(keys: &mut [K], conf: GOBuildConf<GS, SS, S>) -> Self
        where K: Hash + Sync
    {
        Self::with_conf_stats(SliceMutSource::new(keys), conf, &mut ())
    }
}

impl<GS: GroupSize + Sync, SS: SeedSize> GOFunction<GS, SS> {
    /// Reads `Self` from the `input`.
    /// Only [`GOFunction`]s that use default hasher can be read by this method.
    pub fn read(input: &mut dyn io::Read) -> io::Result<Self> {
        Self::read_with_hasher(input, Default::default())
    }
}

impl GOFunction {
    /// Builds [`GOFunction`] for given `keys`, reporting statistics with `stats`.
    /// 
    /// Panics if the construction fails.
    /// Then it is almost certain that the input contains either duplicate keys
    /// or keys indistinguishable by any hash function from the family used.
    pub fn from_slice_with_stats<K, BS>(keys: &[K], stats: &mut BS) -> Self
        where K: Hash + Sync, BS: stats::BuildStatsCollector
    {
        Self::from_slice_with_conf_stats(keys, Default::default(), stats)
    }

    /// Builds [`GOFunction`] for given `keys`.
    /// 
    /// Panics if the construction fails.
    /// Then it is almost certain that the input contains either duplicate keys
    /// or keys indistinguishable by any hash function from the family used.
    pub fn from_slice<K: Hash + Sync>(keys: &[K]) -> Self {
        Self::from_slice_with_conf_stats(keys, Default::default(), &mut ())
    }

    /// Builds [`GOFunction`] for given `keys`.
    /// 
    /// Panics if the construction fails.
    /// Then it is almost certain that the input contains either duplicate keys
    /// or keys indistinguishable by any hash function from the family used.
    pub fn new<K: Hash + Sync, KS: KeySet<K> + Sync>(keys: KS) -> Self {
        Self::with_conf_stats(keys, Default::default(), &mut ())
    }
}

impl<GS: GroupSize, SS: SeedSize, S> GOFunction<GS, SS, S>  {
    /// Returns the number of keys in the input collection given during construction.
    /// 
    /// The time complexity is proportional to the number returned.
    pub fn len(&self) -> usize {
        self.array.content.count_bit_ones()
    }
}

impl<K: Hash + Sync> From<&[K]> for GOFunction {
    fn from(keys: &[K]) -> Self {
        Self::from_slice(keys)
    }
}

impl<K: Hash + Sync + Send> From<Vec<K>> for GOFunction {
    fn from(keys: Vec<K>) -> Self {
        Self::new(keys)
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::fmph::function::tests::{test_mphf, test_mphf_iter};
    use crate::fmph::TwoToPowerBits;
    use std::fmt::{Debug, Display};
    use crate::fmph::Bits;

    fn test_read_write<GS: GroupSize + Sync, SS: SeedSize>(h: &GOFunction<GS, SS>)
        where SS::VecElement: std::cmp::PartialEq + Debug
    {
        let mut buff = Vec::new();
        h.write(&mut buff).unwrap();
        assert_eq!(buff.len(), h.write_bytes());
        let read = GOFunction::<GS, SS>::read(&mut &buff[..]).unwrap();
        assert_eq!(h.level_sizes, read.level_sizes);
        assert_eq!(h.array.content, read.array.content);
        assert_eq!(h.group_seeds, read.group_seeds);
    }

    fn test_hash2_invariants<GS: GroupSize, SS: SeedSize>(h: &GOFunction<GS, SS>) {
        let number_of_groups = h.level_sizes.iter().map(|v| *v as usize).sum::<usize>();
        assert_eq!(h.conf.bits_per_group * number_of_groups, h.array.content.len() * 64);
        assert_eq!(ceiling_div(number_of_groups * h.conf.bits_per_seed.into() as usize, 64), h.group_seeds.len());
    }

    fn test_with_input<K: Hash + Clone + Display + Sync>(to_hash: &[K], bits_per_group: impl GroupSize + Sync) {
        let goconf = GOConf::bps_bpg(Bits(3), bits_per_group);
        let h = GOFunction::from_slice_with_conf(to_hash, GOBuildConf::with_mt(goconf, false));
        //dbg!(h.size_bytes() as f64 * 8.0/to_hash.len() as f64);
        test_mphf(to_hash, |key| h.get(key));
        test_hash2_invariants(&h);
        test_read_write(&h);
        assert_eq!(h.len(), to_hash.len());
    }

    #[test]
    fn test_small_powers_of_two() {
        //test_with_input(&[1, 2, 5], TwoToPowerBits::new(7));     // not supported for now, upto 63 bit / group
        //test_with_input(&[1, 2, 5], TwoToPowerBits::new(6));     // not supported for now, upto 63 bit / group
        test_with_input(&[1, 2, 5], TwoToPowerBits::new(5));
        test_with_input(&[1, 2, 5], TwoToPowerBits::new(4));
        test_with_input(&[1, 2, 5], TwoToPowerBits::new(3));
        test_with_input(&[1, 2, 5], TwoToPowerBits::new(2));
        test_with_input(&[1, 2, 5], TwoToPowerBits::new(1));
        test_with_input(&[1, 2, 5], TwoToPowerBits::new(0));
        //test_with_input(&(-50..150).collect::<Vec<_>>(), TwoToPowerBits::new(7)); // not supported for now, upto 63 bit / group
        //test_with_input(&(-50..150).collect::<Vec<_>>(), TwoToPowerBits::new(6)); // not supported for now, upto 63 bit / group
        test_with_input(&(-50..150).collect::<Vec<_>>(), TwoToPowerBits::new(5));
        test_with_input(&(-50..150).collect::<Vec<_>>(), TwoToPowerBits::new(4));
        test_with_input(&(-50..150).collect::<Vec<_>>(), TwoToPowerBits::new(3));
        test_with_input(&(-50..150).collect::<Vec<_>>(), TwoToPowerBits::new(2));
        test_with_input(&(-50..150).collect::<Vec<_>>(), TwoToPowerBits::new(1));
        test_with_input(&(-50..150).collect::<Vec<_>>(), TwoToPowerBits::new(0));
        //test_with_input(&['a', 'b', 'c', 'd'], TwoToPowerBits::new(7)); // not supported for now, upto 63 bit / group
        //test_with_input(&['a', 'b', 'c', 'd'], TwoToPowerBits::new(6)); // not supported for now, upto 63 bit / group
        test_with_input(&['a', 'b', 'c', 'd'], TwoToPowerBits::new(5));
        test_with_input(&['a', 'b', 'c', 'd'], TwoToPowerBits::new(4));
        test_with_input(&['a', 'b', 'c', 'd'], TwoToPowerBits::new(3));
        test_with_input(&['a', 'b', 'c', 'd'], TwoToPowerBits::new(2));
        test_with_input(&['a', 'b', 'c', 'd'], TwoToPowerBits::new(1));
        test_with_input(&['a', 'b', 'c', 'd'], TwoToPowerBits::new(0));
    }

    #[test]
    fn test_small_bits() {
        test_with_input(&[1, 2, 5], Bits(3));
        test_with_input(&[1, 2, 5], Bits(5));
        test_with_input(&[1, 2, 5], Bits(20));
        test_with_input(&[1, 2, 5], Bits(60));
        test_with_input(&[1, 2, 5], Bits(63));
        test_with_input(&(-50..150).collect::<Vec<_>>(), Bits(3));
        test_with_input(&(-50..150).collect::<Vec<_>>(), Bits(5));
        test_with_input(&(-50..150).collect::<Vec<_>>(), Bits(20));
        test_with_input(&(-50..150).collect::<Vec<_>>(), Bits(60));
        test_with_input(&(-50..150).collect::<Vec<_>>(), Bits(63));
        test_with_input(&['a', 'b', 'c', 'd'], Bits(3));
        test_with_input(&['a', 'b', 'c', 'd'], Bits(5));
        test_with_input(&['a', 'b', 'c', 'd'], Bits(20));
        test_with_input(&['a', 'b', 'c', 'd'], Bits(60));
        test_with_input(&['a', 'b', 'c', 'd'], Bits(63));
    }

    #[test]
    fn test_medium() {
        let keys: Vec<_> = (-2000..2000).map(|v| 3*v).collect();
        //test_with_input(&keys, TwoToPowerBits::new(7));   // not supported for now, upto 63 bit / group
        //test_with_input(&keys, TwoToPowerBits::new(6));   // not supported for now, upto 63 bit / group
        test_with_input(&keys, TwoToPowerBits::new(5));
        test_with_input(&keys, TwoToPowerBits::new(4));
        test_with_input(&keys, TwoToPowerBits::new(3));
        test_with_input(&keys, TwoToPowerBits::new(2));
        test_with_input(&keys, TwoToPowerBits::new(1));
        test_with_input(&keys, TwoToPowerBits::new(0));
        test_with_input(&keys, Bits(3));
        test_with_input(&keys, Bits(5));
        test_with_input(&keys, Bits(10));
        test_with_input(&keys, Bits(13));
        test_with_input(&keys, Bits(20));
        test_with_input(&keys, Bits(27));
        test_with_input(&keys, Bits(33));
        test_with_input(&keys, Bits(45));
        test_with_input(&keys, Bits(50));
        test_with_input(&keys, Bits(55));
        test_with_input(&keys, Bits(60));
        test_with_input(&keys, Bits(63));
    }

    #[test]
    fn test_large_size() {
        let keys = (-20000..20000).collect::<Vec<_>>();
        assert!(GOFunction::from_slice_with_conf(&keys[..], GOConf::default_biggest().into()).size_bytes() as f64 * (8.0/40000.0) < 2.57);
        assert!(GOFunction::from_slice_with_conf(&keys[..], GOConf::default_bigger().into()).size_bytes() as f64 * (8.0/40000.0) < 2.4);
        assert!(GOFunction::from(&keys[..]).size_bytes() as f64 * (8.0/40000.0) < 2.26);
        assert!(GOFunction::from_slice_with_conf(&keys[..], GOConf::default_smallest().into()).size_bytes() as f64 * (8.0/40000.0) < 2.15);
    }

    #[test]
    #[ignore = "uses much memory and time"]
    fn test_fmphgo_for_over_2to32_keys() {
        const LEN: u64 = 5_000_000_000;
        let f = GOFunction::with_conf_stats(
            crate::fmph::keyset::CachedKeySet::dynamic(|| 0..LEN, usize::MAX),
            GOConf::default_biggest().into(),
            &mut crate::stats::BuildStatsPrinter::stdout());
        test_mphf_iter(LEN as usize, 0..LEN, |key| f.get(key));
        assert!(f.size_bytes() as f64 * (8.0/LEN as f64) < 2.57);
    }

    #[test]
    fn test_duplicates() {
        assert!(GOFunction::try_with_conf_stats(vec![1, 1], Default::default(), &mut ()).is_none());
        assert!(GOFunction::try_with_conf_stats(vec![1, 2, 3, 1, 4], Default::default(), &mut ()).is_none());
    }

    #[test]
    fn test_duplicates_partial() {
        let keys = vec![1, 2, 3, 1, 4];
        let expected_initial_len = keys.len();
        let r = GOFunction::try_with_conf_stats_or_partial(keys, Default::default(), &mut ());
        if let Err((mphf, mut remaining, initial_len)) = r {
            assert_eq!(initial_len, expected_initial_len);
            remaining.sort();
            assert_eq!(remaining, vec![1, 1]);
            test_mphf(&[2, 3, 4], |key| mphf.get(key));
        } else {
            assert!(false)
        }
    }
}