1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
#![allow(non_upper_case_globals)]
#![allow(non_camel_case_types)]
#![allow(non_snake_case)]

include!(concat!(env!("OUT_DIR"), "/bindings.rs"));

pub struct PffftSetup {
    width: usize,
    work: Vec<f32>,
    work_buf_offset: usize,
    input: Vec<f32>,
    input_buf_offset: usize,
    output: Vec<f32>,
    output_buf_offset: usize,
    setup: *mut PFFFT_Setup,
}

fn vec_and_alignment_offset<T: Clone>(val: T, size: usize) -> (Vec<T>, usize) {
    let mut work_buf = Vec::<T>::new();
    // PFFFT requires buffers to be 16-byte aligned.
    work_buf.resize(size + 3, val);
    let work_buf_ptr_alignment = work_buf.as_ptr() as usize % 4;
    return (work_buf, (4 - work_buf_ptr_alignment) % 4);
}

impl PffftSetup {
    pub fn new(width: usize) -> PffftSetup {
        unsafe {
            let (work_buf, work_buf_offset) = vec_and_alignment_offset(0.0f32, width);
            let (input_buf, input_buf_offset) = vec_and_alignment_offset(0.0f32, width);
            let (output_buf, output_buf_offset) = vec_and_alignment_offset(0.0f32, width);

            PffftSetup {
                width: width,
                work: work_buf,
                work_buf_offset: work_buf_offset,
                input: input_buf,
                input_buf_offset: input_buf_offset,
                output: output_buf,
                output_buf_offset: output_buf_offset,
                setup: crate::pffft_new_setup(width as i32, crate::pffft_transform_t_PFFFT_REAL),
            }
        }
    }

    pub fn forward(&mut self, input: &[f32], output: &mut [f32]) -> bool {
        if self.setup as usize == 0usize {
            return false;
        }
        if output.len() != self.width {
            return false;
        }
        if input.len() != self.width {
            return false;
        }
        self.input[self.input_buf_offset..(self.input_buf_offset + self.width)]
            .copy_from_slice(input);
        unsafe {
            crate::pffft_transform(
                self.setup,
                self.input[self.input_buf_offset..(self.input_buf_offset + self.width)].as_ptr(),
                self.output[self.output_buf_offset..(self.output_buf_offset + self.width)]
                    .as_mut_ptr(),
                self.work[self.work_buf_offset..(self.work_buf_offset + self.width)].as_mut_ptr(),
                crate::pffft_direction_t_PFFFT_FORWARD,
            )
        }
        output.copy_from_slice(
            &self.output[self.input_buf_offset..(self.input_buf_offset + self.width)],
        );
        true
    }

    pub fn backward(&mut self, input: &[f32], output: &mut [f32]) -> bool {
        if self.setup as usize == 0usize {
            return false;
        }
        if output.len() != self.width {
            return false;
        }
        if input.len() != self.width {
            return false;
        }
        self.input[self.input_buf_offset..(self.input_buf_offset + self.width)]
            .copy_from_slice(input);
        unsafe {
            crate::pffft_transform(
                self.setup,
                self.input[self.input_buf_offset..(self.input_buf_offset + self.width)].as_ptr(),
                self.output[self.output_buf_offset..(self.output_buf_offset + self.width)]
                    .as_mut_ptr(),
                self.work[self.work_buf_offset..(self.work_buf_offset + self.width)].as_mut_ptr(),
                crate::pffft_direction_t_PFFFT_BACKWARD,
            )
        }
        output.copy_from_slice(
            &self.output[self.input_buf_offset..(self.input_buf_offset + self.width)],
        );
        true
    }
}

impl Drop for PffftSetup {
    fn drop(&mut self) {
        unsafe {
            if self.setup as usize != 0usize {
                crate::pffft_destroy_setup(self.setup);
                self.setup = 0usize as *mut PFFFT_Setup;
            }
        }
    }
}

#[cfg(test)]
mod tests {
    #[test]
    fn test_unsafe() {
        unsafe {
            let setup = crate::pffft_new_setup(1024, crate::pffft_direction_t_PFFFT_FORWARD);
            let input: [f32; 1024] = [0.0f32; 1024];
            let mut output: [f32; 1024] = [0.0f32; 1024];
            let mut work: [f32; 1024] = [0.0f32; 1024];
            crate::pffft_transform(
                setup,
                &input[0],
                &mut output[0],
                &mut work[0],
                crate::pffft_direction_t_PFFFT_FORWARD,
            )
        }
    }

    #[test]
    fn test_forward_safe_no_crash() {
        let mut setup = crate::PffftSetup::new(32);
        let input: [f32; 32] = [0.0f32; 32];
        let mut output: [f32; 32] = [0.0f32; 32];
        setup.forward(&input, &mut output);
    }

    #[test]
    fn test_backward_safe_no_crash() {
        let mut setup = crate::PffftSetup::new(32);
        let input: [f32; 32] = [0.0f32; 32];
        let mut output: [f32; 32] = [0.0f32; 32];
        setup.backward(&input, &mut output);
    }

    #[test]
    fn test_forward_safe_dc() {
        let mut setup = crate::PffftSetup::new(32);
        let input: [f32; 32] = [1.0f32; 32];
        let mut output: [f32; 32] = [0.0f32; 32];
        setup.forward(&input, &mut output);
        assert_eq!(output[0], 32f32);
        for expect_zero_idx in 1..32 {
            assert_eq!(output[expect_zero_idx], 0f32);
        }
    }

    #[test]
    fn test_backward_safe_dc() {
        let mut setup = crate::PffftSetup::new(32);
        let mut input: [f32; 32] = [0.0f32; 32];
        input[0] = 1f32;
        let mut output: [f32; 32] = [0.0f32; 32];
        setup.backward(&input, &mut output);
        for idx in 0..32 {
            assert_eq!(output[idx], 1f32);
        }
    }
}