# Struct petgraph::stable_graph::StableGraph
[−]
[src]

pub struct StableGraph<N, E, Ty = Directed, Ix = DefaultIx> { /* fields omitted */ }

`StableGraph<N, E, Ty, Ix>`

is a graph datastructure using an adjacency
list representation.

The graph **does not invalidate** any unrelated node or edge indices when
items are removed.

`StableGraph`

is parameterized over:

- Associated data
`N`

for nodes and`E`

for edges, also called*weights*. The associated data can be of arbitrary type. - Edge type
`Ty`

that determines whether the graph edges are directed or undirected. - Index type
`Ix`

, which determines the maximum size of the graph.

The graph uses **O(|V| + |E|)** space, and allows fast node and edge insert
and efficient graph search.

It implements **O(e')** edge lookup and edge and node removals, where **e'**
is some local measure of edge count.

Nodes and edges are each numbered in an interval from

*0*to some number*m*, but*not all*indices in the range are valid, since gaps are formed by deletions.You can select graph index integer type after the size of the graph. A smaller size may have better performance.

Using indices allows mutation while traversing the graph, see

`Dfs`

.The

`StableGraph`

is a regular rust collection and is`Send`

and`Sync`

(as long as associated data`N`

and`E`

are).Indices don't allow as much compile time checking as references.

Depends on crate feature `stable_graph`

(default). *This is a new feature in
petgraph. You can contribute to help it achieve parity with Graph.*

## Methods

`impl<N, E> StableGraph<N, E, Directed>`

[src]

`fn new() -> Self`

Create a new `StableGraph`

with directed edges.

This is a convenience method. See `StableGraph::with_capacity`

or `StableGraph::default`

for a constructor that is generic in all the
type parameters of `StableGraph`

.

`impl<N, E, Ty, Ix> StableGraph<N, E, Ty, Ix> where`

Ty: EdgeType,

Ix: IndexType,

[src]

Ty: EdgeType,

Ix: IndexType,

`fn with_capacity(nodes: usize, edges: usize) -> Self`

Create a new `StableGraph`

with estimated capacity.

`fn capacity(&self) -> (usize, usize)`

Return the current node and edge capacity of the graph.

`fn clear(&mut self)`

Remove all nodes and edges

`fn node_count(&self) -> usize`

Return the number of nodes (vertices) in the graph.

Computes in **O(1)** time.

`fn edge_count(&self) -> usize`

Return the number of edges in the graph.

Computes in **O(1)** time.

`fn is_directed(&self) -> bool`

Whether the graph has directed edges or not.

`fn add_node(&mut self, weight: N) -> NodeIndex<Ix>`

Add a node (also called vertex) with associated data `weight`

to the graph.

Computes in **O(1)** time.

Return the index of the new node.

**Panics** if the Graph is at the maximum number of nodes for its index
type.

`fn remove_node(&mut self, a: NodeIndex<Ix>) -> Option<N>`

Remove `a`

from the graph if it exists, and return its weight.
If it doesn't exist in the graph, return `None`

.

The node index `a`

is invalidated, but none other.
Edge indices are invalidated as they would be following the removal of
each edge with an endpoint in `a`

.

Computes in **O(e')** time, where **e'** is the number of affected
edges, including *n* calls to `.remove_edge()`

where *n* is the number
of edges with an endpoint in `a`

.

`fn contains_node(&self, a: NodeIndex<Ix>) -> bool`

`fn add_edge(`

&mut self,

a: NodeIndex<Ix>,

b: NodeIndex<Ix>,

weight: E

) -> EdgeIndex<Ix>

&mut self,

a: NodeIndex<Ix>,

b: NodeIndex<Ix>,

weight: E

) -> EdgeIndex<Ix>

Add an edge from `a`

to `b`

to the graph, with its associated
data `weight`

.

Return the index of the new edge.

Computes in **O(1)** time.

**Panics** if any of the nodes don't exist.

**Panics** if the Graph is at the maximum number of edges for its index
type.

**Note:** `StableGraph`

allows adding parallel (“duplicate”) edges.

`fn update_edge(`

&mut self,

a: NodeIndex<Ix>,

b: NodeIndex<Ix>,

weight: E

) -> EdgeIndex<Ix>

&mut self,

a: NodeIndex<Ix>,

b: NodeIndex<Ix>,

weight: E

) -> EdgeIndex<Ix>

Add or update an edge from `a`

to `b`

.
If the edge already exists, its weight is updated.

Return the index of the affected edge.

Computes in **O(e')** time, where **e'** is the number of edges
connected to `a`

(and `b`

, if the graph edges are undirected).

**Panics** if any of the nodes don't exist.

`fn remove_edge(&mut self, e: EdgeIndex<Ix>) -> Option<E>`

Remove an edge and return its edge weight, or `None`

if it didn't exist.

Invalidates the edge index `e`

but no other.

Computes in **O(e')** time, where **e'** is the number of edges
conneced to the same endpoints as `e`

.

`fn node_weight(&self, a: NodeIndex<Ix>) -> Option<&N>`

Access the weight for node `a`

.

Also available with indexing syntax: `&graph[a]`

.

`fn node_weight_mut(&mut self, a: NodeIndex<Ix>) -> Option<&mut N>`

Access the weight for node `a`

, mutably.

Also available with indexing syntax: `&mut graph[a]`

.

`fn node_indices(&self) -> NodeIndices<N, Ix>`

Return an iterator over the node indices of the graph

`fn edge_weight(&self, e: EdgeIndex<Ix>) -> Option<&E>`

Access the weight for edge `e`

.

Also available with indexing syntax: `&graph[e]`

.

`fn edge_weight_mut(&mut self, e: EdgeIndex<Ix>) -> Option<&mut E>`

Access the weight for edge `e`

, mutably

Also available with indexing syntax: `&mut graph[e]`

.

`fn edge_endpoints(`

&self,

e: EdgeIndex<Ix>

) -> Option<(NodeIndex<Ix>, NodeIndex<Ix>)>

&self,

e: EdgeIndex<Ix>

) -> Option<(NodeIndex<Ix>, NodeIndex<Ix>)>

Access the source and target nodes for `e`

.

`fn find_edge(&self, a: NodeIndex<Ix>, b: NodeIndex<Ix>) -> Option<EdgeIndex<Ix>>`

Lookup an edge from `a`

to `b`

.

Computes in **O(e')** time, where **e'** is the number of edges
connected to `a`

(and `b`

, if the graph edges are undirected).

`fn neighbors(&self, a: NodeIndex<Ix>) -> Neighbors<E, Ix>`

Return an iterator of all nodes with an edge starting from `a`

.

`Directed`

: Outgoing edges from`a`

.`Undirected`

: All edges connected to`a`

.

Produces an empty iterator if the node doesn't exist.

Iterator element type is `NodeIndex<Ix>`

.

Use `.neighbors(a).detach()`

to get a neighbor walker that does
not borrow from the graph.

`fn neighbors_directed(`

&self,

a: NodeIndex<Ix>,

dir: Direction

) -> Neighbors<E, Ix>

&self,

a: NodeIndex<Ix>,

dir: Direction

) -> Neighbors<E, Ix>

Return an iterator of all neighbors that have an edge between them and `a`

,
in the specified direction.
If the graph's edges are undirected, this is equivalent to *.neighbors(a)*.

`Directed`

,`Outgoing`

: All edges from`a`

.`Directed`

,`Incoming`

: All edges to`a`

.`Undirected`

: All edges connected to`a`

.

Produces an empty iterator if the node doesn't exist.

Iterator element type is `NodeIndex<Ix>`

.

Use `.neighbors_directed(a, dir).detach()`

to get a neighbor walker that does
not borrow from the graph.

`fn neighbors_undirected(&self, a: NodeIndex<Ix>) -> Neighbors<E, Ix>`

Return an iterator of all neighbors that have an edge between them and `a`

,
in either direction.
If the graph's edges are undirected, this is equivalent to *.neighbors(a)*.

`Directed`

and`Undirected`

: All edges connected to`a`

.

Produces an empty iterator if the node doesn't exist.

Iterator element type is `NodeIndex<Ix>`

.

Use `.neighbors_undirected(a).detach()`

to get a neighbor walker that does
not borrow from the graph.

`fn edges(&self, a: NodeIndex<Ix>) -> Edges<E, Ty, Ix>`

Return an iterator of all edges of `a`

.

`Directed`

: Outgoing edges from`a`

.`Undirected`

: All edges connected to`a`

.

Produces an empty iterator if the node doesn't exist.

Iterator element type is `EdgeReference<E, Ix>`

.

`fn edges_directed(&self, a: NodeIndex<Ix>, dir: Direction) -> Edges<E, Ty, Ix>`

Return an iterator of all edges of `a`

, in the specified direction.

`Directed`

,`Outgoing`

: All edges from`a`

.`Directed`

,`Incoming`

: All edges to`a`

.`Undirected`

: All edges connected to`a`

.

Produces an empty iterator if the node `a`

doesn't exist.

Iterator element type is `EdgeReference<E, Ix>`

.

`fn index_twice_mut<T, U>(`

&mut self,

i: T,

j: U

) -> (&mut Self::Output, &mut Self::Output) where

Self: IndexMut<T> + IndexMut<U>,

T: GraphIndex,

U: GraphIndex,

&mut self,

i: T,

j: U

) -> (&mut Self::Output, &mut Self::Output) where

Self: IndexMut<T> + IndexMut<U>,

T: GraphIndex,

U: GraphIndex,

Index the `Graph`

by two indices, any combination of
node or edge indices is fine.

**Panics** if the indices are equal or if they are out of bounds.

`fn retain_nodes<F>(&mut self, visit: F) where`

F: FnMut(Frozen<Self>, NodeIndex<Ix>) -> bool,

F: FnMut(Frozen<Self>, NodeIndex<Ix>) -> bool,

Keep all nodes that return `true`

from the `visit`

closure,
remove the others.

`visit`

is provided a proxy reference to the graph, so that
the graph can be walked and associated data modified.

The order nodes are visited is not specified.

The node indices of the removed nodes are invalidated, but none other. Edge indices are invalidated as they would be following the removal of each edge with an endpoint in a removed node.

Computes in **O(n + e')** time, where **n** is the number of node indices and
**e'** is the number of affected edges, including *n* calls to `.remove_edge()`

where *n* is the number of edges with an endpoint in a removed node.

`fn from_edges<I>(iterable: I) -> Self where`

I: IntoIterator,

I::Item: IntoWeightedEdge<E>,

<I::Item as IntoWeightedEdge<E>>::NodeId: Into<NodeIndex<Ix>>,

N: Default,

I: IntoIterator,

I::Item: IntoWeightedEdge<E>,

<I::Item as IntoWeightedEdge<E>>::NodeId: Into<NodeIndex<Ix>>,

N: Default,

Create a new `StableGraph`

from an iterable of edges.

Node weights `N`

are set to default values.
Edge weights `E`

may either be specified in the list,
or they are filled with default values.

Nodes are inserted automatically to match the edges.

use petgraph::stable_graph::StableGraph; let gr = StableGraph::<(), i32>::from_edges(&[ (0, 1), (0, 2), (0, 3), (1, 2), (1, 3), (2, 3), ]);

`fn extend_with_edges<I>(&mut self, iterable: I) where`

I: IntoIterator,

I::Item: IntoWeightedEdge<E>,

<I::Item as IntoWeightedEdge<E>>::NodeId: Into<NodeIndex<Ix>>,

N: Default,

I: IntoIterator,

I::Item: IntoWeightedEdge<E>,

<I::Item as IntoWeightedEdge<E>>::NodeId: Into<NodeIndex<Ix>>,

N: Default,

Extend the graph from an iterable of edges.

Node weights `N`

are set to default values.
Edge weights `E`

may either be specified in the list,
or they are filled with default values.

Nodes are inserted automatically to match the edges.

## Trait Implementations

`impl<'a, N, E: 'a, Ty, Ix> IntoNeighbors for &'a StableGraph<N, E, Ty, Ix> where`

Ty: EdgeType,

Ix: IndexType,

[src]

Ty: EdgeType,

Ix: IndexType,

`type Neighbors = Neighbors<'a, E, Ix>`

`fn neighbors(self, n: Self::NodeId) -> Self::Neighbors`

Return an iterator of the neighbors of node `a`

.

`impl<'a, N, E: 'a, Ty, Ix> IntoNeighborsDirected for &'a StableGraph<N, E, Ty, Ix> where`

Ty: EdgeType,

Ix: IndexType,

[src]

Ty: EdgeType,

Ix: IndexType,

`type NeighborsDirected = Neighbors<'a, E, Ix>`

`fn neighbors_directed(`

self,

n: NodeIndex<Ix>,

d: Direction

) -> Self::NeighborsDirected

self,

n: NodeIndex<Ix>,

d: Direction

) -> Self::NeighborsDirected

`impl<'a, N, E: 'a, Ty, Ix> IntoNodeIdentifiers for &'a StableGraph<N, E, Ty, Ix> where`

Ty: EdgeType,

Ix: IndexType,

[src]

Ty: EdgeType,

Ix: IndexType,

`type NodeIdentifiers = NodeIndices<'a, N, Ix>`

`fn node_identifiers(self) -> Self::NodeIdentifiers`

`impl<N, E, Ty, Ix> NodeCount for StableGraph<N, E, Ty, Ix> where`

Ty: EdgeType,

Ix: IndexType,

[src]

Ty: EdgeType,

Ix: IndexType,

`fn node_count(&self) -> usize`

`impl<N, E, Ty, Ix> GraphProp for StableGraph<N, E, Ty, Ix> where`

Ty: EdgeType,

Ix: IndexType,

[src]

Ty: EdgeType,

Ix: IndexType,

`impl<N, E, Ty, Ix> GraphBase for StableGraph<N, E, Ty, Ix> where`

Ix: IndexType,

[src]

Ix: IndexType,

`impl<N, E, Ty, Ix> Visitable for StableGraph<N, E, Ty, Ix> where`

Ty: EdgeType,

Ix: IndexType,

[src]

Ty: EdgeType,

Ix: IndexType,

`type Map = FixedBitSet`

The associated map type

`fn visit_map(&self) -> FixedBitSet`

Create a new visitor map

`fn reset_map(&self, map: &mut Self::Map)`

Reset the visitor map (and resize to new size of graph if needed)

`impl<N, E, Ty, Ix> Data for StableGraph<N, E, Ty, Ix> where`

Ty: EdgeType,

Ix: IndexType,

[src]

Ty: EdgeType,

Ix: IndexType,

`type NodeWeight = N`

`type EdgeWeight = E`

`impl<N, E, Ty, Ix> DataMap for StableGraph<N, E, Ty, Ix> where`

Ty: EdgeType,

Ix: IndexType,

[src]

Ty: EdgeType,

Ix: IndexType,

`fn node_weight(&self, id: Self::NodeId) -> Option<&Self::NodeWeight>`

`fn edge_weight(&self, id: Self::EdgeId) -> Option<&Self::EdgeWeight>`

`impl<N, E, Ty, Ix> DataMapMut for StableGraph<N, E, Ty, Ix> where`

Ty: EdgeType,

Ix: IndexType,

[src]

Ty: EdgeType,

Ix: IndexType,

`fn node_weight_mut(&mut self, id: Self::NodeId) -> Option<&mut Self::NodeWeight>`

`fn edge_weight_mut(&mut self, id: Self::EdgeId) -> Option<&mut Self::EdgeWeight>`

`impl<N, E, Ty, Ix> Build for StableGraph<N, E, Ty, Ix> where`

Ty: EdgeType,

Ix: IndexType,

[src]

Ty: EdgeType,

Ix: IndexType,

`fn add_node(&mut self, weight: Self::NodeWeight) -> Self::NodeId`

`fn add_edge(`

&mut self,

a: Self::NodeId,

b: Self::NodeId,

weight: Self::EdgeWeight

) -> Option<Self::EdgeId>

&mut self,

a: Self::NodeId,

b: Self::NodeId,

weight: Self::EdgeWeight

) -> Option<Self::EdgeId>

Add a new edge. If parallel edges (duplicate) are not allowed and the edge already exists, return `None`

. Read more

`fn update_edge(`

&mut self,

a: Self::NodeId,

b: Self::NodeId,

weight: Self::EdgeWeight

) -> Self::EdgeId

&mut self,

a: Self::NodeId,

b: Self::NodeId,

weight: Self::EdgeWeight

) -> Self::EdgeId

Add or update the edge from `a`

to `b`

. Return the id of the affected edge. Read more

`impl<N, E, Ty, Ix> Create for StableGraph<N, E, Ty, Ix> where`

Ty: EdgeType,

Ix: IndexType,

[src]

Ty: EdgeType,

Ix: IndexType,

`fn with_capacity(nodes: usize, edges: usize) -> Self`

`impl<N, E, Ty, Ix> FromElements for StableGraph<N, E, Ty, Ix> where`

Ty: EdgeType,

Ix: IndexType,

[src]

Ty: EdgeType,

Ix: IndexType,

`fn from_elements<I>(iterable: I) -> Self where`

Self: Sized,

I: IntoIterator<Item = Element<Self::NodeWeight, Self::EdgeWeight>>,

Self: Sized,

I: IntoIterator<Item = Element<Self::NodeWeight, Self::EdgeWeight>>,

`impl<N, E, Ty, Ix> Debug for StableGraph<N, E, Ty, Ix> where`

N: Debug,

E: Debug,

Ty: EdgeType,

Ix: IndexType,

[src]

N: Debug,

E: Debug,

Ty: EdgeType,

Ix: IndexType,

`impl<N, E, Ty, Ix: IndexType> Clone for StableGraph<N, E, Ty, Ix> where`

N: Clone,

E: Clone,

[src]

N: Clone,

E: Clone,

The resulting cloned graph has the same graph indices as `self`

.

`fn clone(&self) -> Self`

Returns a copy of the value. Read more

`fn clone_from(&mut self, rhs: &Self)`

Performs copy-assignment from `source`

. Read more

`impl<N, E, Ty, Ix> Index<NodeIndex<Ix>> for StableGraph<N, E, Ty, Ix> where`

Ty: EdgeType,

Ix: IndexType,

[src]

Ty: EdgeType,

Ix: IndexType,

Index the `StableGraph`

by `NodeIndex`

to access node weights.

**Panics** if the node doesn't exist.

`type Output = N`

The returned type after indexing

`fn index(&self, index: NodeIndex<Ix>) -> &N`

The method for the indexing (`container[index]`

) operation

`impl<N, E, Ty, Ix> IndexMut<NodeIndex<Ix>> for StableGraph<N, E, Ty, Ix> where`

Ty: EdgeType,

Ix: IndexType,

[src]

Ty: EdgeType,

Ix: IndexType,

Index the `StableGraph`

by `NodeIndex`

to access node weights.

**Panics** if the node doesn't exist.

`fn index_mut(&mut self, index: NodeIndex<Ix>) -> &mut N`

The method for the mutable indexing (`container[index]`

) operation

`impl<N, E, Ty, Ix> Index<EdgeIndex<Ix>> for StableGraph<N, E, Ty, Ix> where`

Ty: EdgeType,

Ix: IndexType,

[src]

Ty: EdgeType,

Ix: IndexType,

Index the `StableGraph`

by `EdgeIndex`

to access edge weights.

**Panics** if the edge doesn't exist.

`type Output = E`

The returned type after indexing

`fn index(&self, index: EdgeIndex<Ix>) -> &E`

The method for the indexing (`container[index]`

) operation

`impl<N, E, Ty, Ix> IndexMut<EdgeIndex<Ix>> for StableGraph<N, E, Ty, Ix> where`

Ty: EdgeType,

Ix: IndexType,

[src]

Ty: EdgeType,

Ix: IndexType,

Index the `StableGraph`

by `EdgeIndex`

to access edge weights.

**Panics** if the edge doesn't exist.

`fn index_mut(&mut self, index: EdgeIndex<Ix>) -> &mut E`

The method for the mutable indexing (`container[index]`

) operation

`impl<N, E, Ty, Ix> Default for StableGraph<N, E, Ty, Ix> where`

Ty: EdgeType,

Ix: IndexType,

[src]

Ty: EdgeType,

Ix: IndexType,

Create a new empty `StableGraph`

.

`impl<'a, N, E, Ty, Ix> IntoEdges for &'a StableGraph<N, E, Ty, Ix> where`

Ty: EdgeType,

Ix: IndexType,

[src]

Ty: EdgeType,

Ix: IndexType,

`impl<'a, N: 'a, E: 'a, Ty, Ix> IntoEdgeReferences for &'a StableGraph<N, E, Ty, Ix> where`

Ty: EdgeType,

Ix: IndexType,

[src]

Ty: EdgeType,

Ix: IndexType,

`type EdgeRef = EdgeReference<'a, E, Ix>`

`type EdgeReferences = EdgeReferences<'a, E, Ix>`

`fn edge_references(self) -> Self::EdgeReferences`

Create an iterator over all edges in the graph, in indexed order.

Iterator element type is `EdgeReference<E, Ix>`

.

`impl<N, E, Ty, Ix> NodeIndexable for StableGraph<N, E, Ty, Ix> where`

Ty: EdgeType,

Ix: IndexType,

[src]

Ty: EdgeType,

Ix: IndexType,

`fn node_bound(&self) -> usize`

Return an upper bound of the node indices in the graph

`fn to_index(&self, ix: NodeIndex<Ix>) -> usize`

Convert `a`

to an integer index.

`fn from_index(&self, ix: usize) -> Self::NodeId`

Convert `i`

to a node index

`impl<N, E, Ty, Ix> GetAdjacencyMatrix for StableGraph<N, E, Ty, Ix> where`

Ty: EdgeType,

Ix: IndexType,

[src]

Ty: EdgeType,

Ix: IndexType,

The adjacency matrix for **Graph** is a bitmap that's computed by
`.adjacency_matrix()`

.

`type AdjMatrix = FixedBitSet`

The associated adjacency matrix type

`fn adjacency_matrix(&self) -> FixedBitSet`

Create the adjacency matrix

`fn is_adjacent(`

&self,

matrix: &FixedBitSet,

a: NodeIndex<Ix>,

b: NodeIndex<Ix>

) -> bool

&self,

matrix: &FixedBitSet,

a: NodeIndex<Ix>,

b: NodeIndex<Ix>

) -> bool

Return true if there is an edge from `a`

to `b`

, false otherwise. Read more