1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
#![allow(non_snake_case)]
#![recursion_limit = "128"]

extern crate itertools;
extern crate proc_macro;
extern crate proc_macro2;
extern crate single;
extern crate syn;
#[macro_use]
extern crate quote;

use itertools::Itertools;
use proc_macro2::Span;
use single::Single;
use syn::{
    punctuated::Pair, spanned::Spanned, Data, DataEnum, DataStruct, DeriveInput, Field, Fields,
    Ident, Path, Type, TypePath,
};

mod attributes;
mod utils;

use attributes::{pest_attributes, PestAttribute};
use utils::accumulate;

type Result<T> = std::result::Result<T, (String, Span)>;
type DeriveResult = Result<proc_macro2::TokenStream>;

#[proc_macro_derive(FromPest, attributes(pest))]
pub fn derive_FromPest(input: proc_macro::TokenStream) -> proc_macro::TokenStream {
    derive_FromPest_impl(syn::parse(input).unwrap())
        .unwrap_or_else(compile_error)
        .into()
}

fn compile_error((err, span): (String, Span)) -> proc_macro2::TokenStream {
    quote_spanned! {span=>
        compile_error!(#err);
    }
}

fn derive_FromPest_impl(input: DeriveInput) -> DeriveResult {
    let name = input.ident;
    let (impl_generics, type_generics, where_clause) = input.generics.split_for_impl();

    let impl_scoping_const = syn::Ident::new(
        &format!("__IMPL_FromPest_FOR_{}", name.to_string()),
        Span::call_site(),
    );

    let lifetime = {
        let mut lifetimes = input.generics.lifetimes();
        match (lifetimes.next(), lifetimes.next()) {
            (Some(def), None) => def.lifetime.clone(),
            _ => Err((
                "FromPest can only be derived for a struct with a single lifetime parameter"
                    .to_string(),
                input.generics.params.span(),
            ))?,
        }
    };

    let attrs = pest_attributes(&input.attrs)?;

    let (rule_enum, rule_variant) = {
        let rule_variant = attrs
            .iter()
            .filter_map(PestAttribute::rule)
            .single()
            .map_err(|err| {
                (
                    format!(
                        "Deriving FromPest requires a single `#[pest(rule = <Rule>)]`, \
                         you provided {}",
                        match err {
                            single::Error::NoElements => "none",
                            single::Error::MultipleElements => "multiple",
                        }
                    ),
                    Span::call_site(),
                )
            })?;
        let mut rule_enum: Path = rule_variant.clone();
        rule_enum.segments.pop();
        match rule_enum.segments.pop() {
            Some(Pair::Punctuated(t, _)) | Some(Pair::End(t)) => rule_enum.segments.push_value(t),
            None => Err((
                "Path should be to the enum variant, including the enum in the path".to_string(),
                rule_variant.span(),
            ))?,
        }
        (rule_enum, rule_variant)
    };

    let discard = match attrs.iter().filter(|attr| attr.discard_trailing()).count() {
        0 => quote!(),
        1 => quote!(it.discard();),
        _ => Err((
            "Multiple `#[pest(discard_trailing)]` attributes are not allowed".to_string(),
            Span::call_site(),
        ))?,
    };

    let implementation = match input.data {
        Data::Struct(data) => derive_FromPest_DataStruct(name.clone(), data)?,
        Data::Enum(data) => derive_FromPest_DataEnum(name.clone(), data)?,
        Data::Union(data) => Err((
            "FromPest cannot be derived for union types".to_string(),
            data.union_token.span(),
        ))?,
    };

    Ok(quote! {
        #[allow(non_upper_case_globals, unused_attributes, unused_qualifications)]
        const #impl_scoping_const: () = {
            #[cfg_attr(feature = "cargo-clippy", allow(useless_attribute))]
            #[allow(rust_2018_idioms)]
            extern crate pest_deconstruct as __crate;
            #[cfg_attr(feature = "cargo-clippy", allow(useless_attribute))]
            #[allow(rust_2018_idioms)]
            extern crate pest as __pest;
            impl #impl_generics __crate::FromPest < #lifetime > for #name #type_generics #where_clause {
                type Rule = #rule_enum;
                const RULE: #rule_enum = #rule_variant;
                fn from_pest(pest: __pest::iterators::Pair<#lifetime, #rule_enum>) -> Self {
                    #[allow(unused)]
                    let span = pest.as_span();
                    #[allow(unused)]
                    let mut it = __crate::PestDeconstruct::deconstruct(pest);

                    let result = #implementation;
                    #discard
                    result
                }
            }
        };
    })
}

fn type_path_field(ty: &Type) -> Result<&TypePath> {
    match ty {
        Type::Slice(ty) => Err((
            "FromPest derive does not support slice fields".to_string(),
            ty.span(),
        )),
        Type::Array(ty) => Err((
            "FromPest derive does not support array fields".to_string(),
            ty.span(),
        )),
        Type::Ptr(ty) => Err((
            "FromPest derive does not support ptr fields".to_string(),
            ty.span(),
        )),
        Type::Reference(ty) => Err((
            "FromPest derive does not support reference fields".to_string(),
            ty.span(),
        )),
        Type::BareFn(ty) => Err((
            "FromPest derive does not support bare fn fields".to_string(),
            ty.span(),
        )),
        Type::Never(ty) => Err((
            "FromPest derive does not support ! fields".to_string(),
            ty.span(),
        )),
        Type::Tuple(ty) => Err((
            "FromPest derive does not support tuple fields; use separate fields instead"
                .to_string(),
            ty.span(),
        )),
        Type::Path(ty) => Ok(ty),
        Type::TraitObject(ty) => Err((
            "FromPest derive does not support trait object fields".to_string(),
            ty.span(),
        )),
        Type::ImplTrait(ty) => Err((
            "FromPest derive does not support impl trait fields".to_string(),
            ty.span(),
        )),
        Type::Paren(ty) => type_path_field(&ty.elem),
        Type::Group(ty) => type_path_field(&ty.elem),
        Type::Infer(ty) => Err((
            "FromPest derive does not support inferred fields".to_string(),
            ty.span(),
        )),
        Type::Macro(ty) => Err((
            "FromPest derive does not support macro typed fields".to_string(),
            ty.span(),
        )),
        Type::Verbatim(ty) => Err((
            "FromPest derive has no idea what type field this is".to_string(),
            ty.span(),
        )),
    }
}

enum ParseKind {
    Outer,
    Inner(Path),
}

fn should_do_parse(span: Span, attrs: &[PestAttribute]) -> Result<Option<ParseKind>> {
    Ok(match attrs.iter().filter(|attr| attr.parse()).count() {
        0 => None,
        1 => match attrs.iter().flat_map(|attr| attr.rule()).single() {
            Ok(path) => Some(ParseKind::Inner(path.clone())),
            Err(single::Error::NoElements) => Some(ParseKind::Outer),
            Err(single::Error::MultipleElements) => Err((
                "Multiple `#[pest(rule = <Rule>)]` are not allowed".to_string(),
                span,
            ))?,
        },
        _ => Err((
            "Multiple `#[pest(parse)]` attributes are not allowed".to_string(),
            Span::call_site(),
        ))?,
    })
}

fn derive_FromPest_DataStruct(name: Ident, input: DataStruct) -> DeriveResult {
    fn deconstruct_field(field: &Field) -> DeriveResult {
        let ty = type_path_field(&field.ty)?;
        if ty.qself.is_some() {
            Err((
                "FromPest derive does not support qualified self typed fields".to_string(),
                ty.span(),
            ))?;
        }

        let segment = ty.path.segments.iter().next().unwrap();
        let span = segment.span();
        let name = &field.ident;
        let attrs = pest_attributes(&field.attrs)?;

        let translation = if segment.ident == "Box" {
            match should_do_parse(field.span(), &attrs)? {
                None => quote_spanned! {span=>
                    Box::new(it.next())
                },
                Some(ParseKind::Outer) => quote_spanned! {span=>
                    Box::new(span.as_str().parse().unwrap())
                },
                Some(ParseKind::Inner(rule)) => quote_spanned! {span=>
                    Box::new(it.next_pair(#rule).as_span().as_str().parse().unwrap())
                },
            }
        } else if segment.ident == "Vec" {
            match should_do_parse(field.span(), &attrs)? {
                None => quote_spanned! {span=>
                    it.next_many()
                },
                Some(ParseKind::Outer) => Err((
                    "It doesn't make sense to outer parse into a Vec; maybe provide a rule"
                        .to_string(),
                    span,
                ))?,
                Some(ParseKind::Inner(rule)) => quote_spanned! {span=>
                    it.next_pair_many(#rule)
                        .into_iter()
                        .map(|pair| pair.as_span().as_str().parse().unwrap())
                        .collect()
                },
            }
        } else if segment.ident == "Option" {
            match should_do_parse(field.span(), &attrs)? {
                None => quote_spanned! {span=>
                    it.next_opt()
                },
                Some(ParseKind::Outer) => quote_spanned! {span=>
                    span.as_str().parse().ok()
                },
                Some(ParseKind::Inner(rule)) => quote_spanned! {span=>
                    it.next_pair_opt(#rule)
                        .and_then(|pair| pair.as_span().as_str().parse().ok())
                },
            }
        } else if segment.ident == "Span" {
            match should_do_parse(field.span(), &attrs)? {
                None => quote_spanned! {span=>
                    span.clone().into()
                },
                Some(ParseKind::Outer) => Err((
                    "It doesn't make sense to outer parse into a Span; just use Span or provide a rule"
                        .to_string(),
                    span,
                ))?,
                Some(ParseKind::Inner(rule)) => quote_spanned! {span=>
                    it.next_pair(#rule).as_span().into()
                },
            }
        } else {
            match should_do_parse(field.span(), &attrs)? {
                None => quote_spanned! {span=>
                    it.next()
                },
                Some(ParseKind::Outer) => quote_spanned! {span=>
                    span.as_str().parse().unwrap()
                },
                Some(ParseKind::Inner(rule)) => quote_spanned! {span=>
                    it.next_pair(#rule).as_span().as_str().parse().unwrap()
                },
            }
        };

        Ok(quote!(#(#name:)* #translation))
    }

    match input.fields {
        Fields::Named(fields) => {
            let fields = fields
                .named
                .iter()
                .map(deconstruct_field)
                .fold_results(vec![], accumulate)?;
            Ok(quote!(#name { #(#fields),* } ))
        }
        Fields::Unnamed(fields) => {
            let fields = fields
                .unnamed
                .iter()
                .map(deconstruct_field)
                .fold_results(vec![], accumulate)?;
            Ok(quote!(#name(#(#fields),*)))
        }
        Fields::Unit => Ok(quote!(#name)),
    }
}

fn derive_FromPest_DataEnum(name: Ident, input: DataEnum) -> DeriveResult {
    let variants = input
        .variants
        .iter()
        .map(|variant| {
            let attrs = pest_attributes(&variant.attrs)?;
            let ident = &variant.ident;

            match should_do_parse(variant.span(), &attrs)? {
                None => match attrs.iter().filter_map(PestAttribute::rule).single() {
                    Ok(rule) => Ok(quote! {
                        if let Some(pair) = it.next_pair_opt(#rule) {
                            it.next_untyped();
                            #name::#ident(pair.as_span().into())
                        }
                    }),
                    Err(single::Error::NoElements) => Ok(quote! {
                        if let Some(node) = it.next_opt() {
                            #name::#ident(node)
                        }
                    }),
                    Err(single::Error::MultipleElements) => Err((
                        "Multiple conflicting #[pest(rule = <Rule>)]".to_string(),
                        variant.span(),
                    )),
                },
                Some(ParseKind::Outer) => Ok(quote! {
                    if let Ok(node) = span.as_str().parse() {
                        #name::#ident(node)
                    }
                }),
                Some(ParseKind::Inner(rule)) => Ok(quote! {
                    if let Some(Ok(node)) = it.next_pair_opt(#rule)
                        .map(|pair| pair.as_span().as_str().parse())
                    {
                        it.next_untyped();
                        #name::#ident(node)
                    }
                }),
            }
        }).fold_results(vec![], accumulate)?;

    Ok(quote! {
        #(#variants)else* else {
            panic!(
                "Unexpected {}{:?}",
                stringify!(#name),
                ::std::iter::repeat_with(|| it.next_untyped())
                    .take_while(Option::is_some)
                    .map(Option::unwrap)
                    .collect::<Vec<_>>(),
            )
        }
    })
}