1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
use byteorder::{BigEndian, ReadBytesExt, WriteBytesExt};
use index::config::{IndexType, IndexTypeId};
use index::tree::{Leaf, LeafEntry, Node, Nodes, Value};
use persy::{PRes, PersyError, RecRef};
use std::io::{Cursor, Read, Write};
use std::str;
use PersyId;

macro_rules! impl_index_type {
    ($t:ident, $v:expr,$v1:expr) => {
        impl IndexType for $t {
            fn get_id() -> u8 {
                $v
            }
            fn get_type_id() -> IndexTypeId {
                $v1
            }
        }
    };
}

impl_index_type!(u8, 1, IndexTypeId::U8);
impl_index_type!(u16, 2, IndexTypeId::U16);
impl_index_type!(u32, 3, IndexTypeId::U32);
impl_index_type!(u64, 4, IndexTypeId::U64);
impl_index_type!(i8, 5, IndexTypeId::I8);
impl_index_type!(i16, 6, IndexTypeId::I16);
impl_index_type!(i32, 7, IndexTypeId::I32);
impl_index_type!(i64, 8, IndexTypeId::I64);
//impl_index_type!(f32, 9);
//impl_index_type!(f64, 10);
impl_index_type!(String, 12, IndexTypeId::STRING);
impl_index_type!(PersyId, 13, IndexTypeId::PERSYID);

pub trait IndexSerialization: Sized {
    fn serialize(&self, buffer: &mut Write) -> PRes<()>;
    fn deserialize(value: &mut Read) -> PRes<Self>;
}

pub fn deserialize<K: IndexType, V: IndexType>(value: &[u8]) -> PRes<Node<K, V>> {
    let mut reader = Cursor::new(value);
    let t = reader.read_u8()?;
    match t {
        1 => {
            let size = reader.read_u32::<BigEndian>()?;
            let mut entries = Vec::with_capacity(size as usize);
            for _ in 0..size {
                let key = K::deserialize(&mut reader)?;
                let value_type = reader.read_u8()?;
                if value_type == 1 {
                    let val_size = reader.read_u32::<BigEndian>()?;
                    let mut value = Vec::with_capacity(val_size as usize);
                    for _ in 0..val_size {
                        value.push(V::deserialize(&mut reader)?);
                    }
                    entries.push(LeafEntry {
                        key,
                        value: Value::CLUSTER(value),
                    });
                } else {
                    let value = V::deserialize(&mut reader)?;
                    entries.push(LeafEntry {
                        key,
                        value: Value::SINGLE(value),
                    });
                }
            }
            let page = reader.read_u64::<BigEndian>()?;
            let pos = reader.read_u32::<BigEndian>()?;
            let prev = if page == 0 && pos == 0 {
                None
            } else {
                Some(RecRef::new(page, pos))
            };
            let page = reader.read_u64::<BigEndian>()?;
            let pos = reader.read_u32::<BigEndian>()?;
            let next = if page == 0 && pos == 0 {
                None
            } else {
                Some(RecRef::new(page, pos))
            };
            Ok(Node::LEAF(Leaf { entries, prev, next }))
        }
        2 => {
            let size = reader.read_u32::<BigEndian>()?;
            let mut keys = Vec::with_capacity(size as usize);
            for _ in 0..size {
                let key = K::deserialize(&mut reader)?;
                keys.push(key);
            }
            let size = reader.read_u32::<BigEndian>()?;
            let mut pointers = Vec::with_capacity(size as usize);
            for _ in 0..size {
                let page = reader.read_u64::<BigEndian>()?;
                let pos = reader.read_u32::<BigEndian>()?;
                pointers.push(RecRef::new(page, pos));
            }
            Ok(Node::NODE(Nodes { keys, pointers }))
        }
        _ => panic!("error on index node deserialization"),
    }
}

pub fn serialize<K: IndexType, V: IndexType>(node: Node<K, V>) -> PRes<Vec<u8>> {
    let mut dest = Vec::new();
    match node {
        Node::LEAF(leaf) => {
            dest.write_u8(1)?;
            dest.write_u32::<BigEndian>(leaf.entries.len() as u32)?;
            for entry in leaf.entries {
                entry.key.serialize(&mut dest)?;
                match entry.value {
                    Value::CLUSTER(cluster) => {
                        dest.write_u8(1)?;
                        dest.write_u32::<BigEndian>(cluster.len() as u32)?;
                        for val in cluster {
                            val.serialize(&mut dest)?;
                        }
                    }
                    Value::SINGLE(val) => {
                        dest.write_u8(2)?;
                        val.serialize(&mut dest)?;
                    }
                }
            }
            if let Some(prev) = leaf.prev {
                dest.write_u64::<BigEndian>(prev.page)?;
                dest.write_u32::<BigEndian>(prev.pos)?;
            } else {
                dest.write_u64::<BigEndian>(0)?;
                dest.write_u32::<BigEndian>(0)?;
            }

            if let Some(next) = leaf.next {
                dest.write_u64::<BigEndian>(next.page)?;
                dest.write_u32::<BigEndian>(next.pos)?;
            } else {
                dest.write_u64::<BigEndian>(0)?;
                dest.write_u32::<BigEndian>(0)?;
            }
        }
        Node::NODE(node) => {
            dest.write_u8(2)?;
            dest.write_u32::<BigEndian>(node.keys.len() as u32)?;
            for k in node.keys {
                k.serialize(&mut dest)?;
            }
            dest.write_u32::<BigEndian>(node.pointers.len() as u32)?;
            for p in node.pointers {
                dest.write_u64::<BigEndian>(p.page)?;
                dest.write_u32::<BigEndian>(p.pos)?;
            }
        }
    }
    Ok(dest)
}

impl IndexSerialization for u8 {
    fn serialize(&self, buffer: &mut Write) -> PRes<()> {
        buffer.write_u8(*self).map_err(PersyError::from)
    }
    fn deserialize(value: &mut Read) -> PRes<Self> {
        value.read_u8().map_err(PersyError::from)
    }
}

impl IndexSerialization for u16 {
    fn serialize(&self, buffer: &mut Write) -> PRes<()> {
        buffer.write_u16::<BigEndian>(*self).map_err(PersyError::from)
    }
    fn deserialize(value: &mut Read) -> PRes<Self> {
        value.read_u16::<BigEndian>().map_err(PersyError::from)
    }
}

impl IndexSerialization for u32 {
    fn serialize(&self, buffer: &mut Write) -> PRes<()> {
        buffer.write_u32::<BigEndian>(*self).map_err(PersyError::from)
    }
    fn deserialize(value: &mut Read) -> PRes<Self> {
        value.read_u32::<BigEndian>().map_err(PersyError::from)
    }
}

impl IndexSerialization for u64 {
    fn serialize(&self, buffer: &mut Write) -> PRes<()> {
        buffer.write_u64::<BigEndian>(*self).map_err(PersyError::from)
    }
    fn deserialize(value: &mut Read) -> PRes<Self> {
        value.read_u64::<BigEndian>().map_err(PersyError::from)
    }
}

impl IndexSerialization for i8 {
    fn serialize(&self, buffer: &mut Write) -> PRes<()> {
        buffer.write_i8(*self).map_err(PersyError::from)
    }
    fn deserialize(value: &mut Read) -> PRes<Self> {
        value.read_i8().map_err(PersyError::from)
    }
}

impl IndexSerialization for i16 {
    fn serialize(&self, buffer: &mut Write) -> PRes<()> {
        buffer.write_i16::<BigEndian>(*self).map_err(PersyError::from)
    }
    fn deserialize(value: &mut Read) -> PRes<Self> {
        value.read_i16::<BigEndian>().map_err(PersyError::from)
    }
}

impl IndexSerialization for i32 {
    fn serialize(&self, buffer: &mut Write) -> PRes<()> {
        buffer.write_i32::<BigEndian>(*self).map_err(PersyError::from)
    }
    fn deserialize(value: &mut Read) -> PRes<Self> {
        value.read_i32::<BigEndian>().map_err(PersyError::from)
    }
}

impl IndexSerialization for i64 {
    fn serialize(&self, buffer: &mut Write) -> PRes<()> {
        buffer.write_i64::<BigEndian>(*self).map_err(PersyError::from)
    }
    fn deserialize(value: &mut Read) -> PRes<Self> {
        value.read_i64::<BigEndian>().map_err(PersyError::from)
    }
}

impl IndexSerialization for PersyId {
    fn serialize(&self, buffer: &mut Write) -> PRes<()> {
        buffer.write_u64::<BigEndian>(self.0.page)?;
        buffer.write_u32::<BigEndian>(self.0.pos)?;
        Ok(())
    }
    fn deserialize(value: &mut Read) -> PRes<Self> {
        let page = value.read_u64::<BigEndian>()?;
        let pos = value.read_u32::<BigEndian>()?;
        Ok(PersyId(RecRef::new(page, pos)))
    }
}

impl IndexSerialization for String {
    fn serialize(&self, buffer: &mut Write) -> PRes<()> {
        buffer.write_u16::<BigEndian>(self.len() as u16)?;
        buffer.write_all(self.as_bytes())?;
        Ok(())
    }
    fn deserialize(value: &mut Read) -> PRes<Self> {
        let string_size = value.read_u16::<BigEndian>()?;
        let mut slice: Vec<u8> = Vec::new();
        value.take(u64::from(string_size)).read_to_end(&mut slice)?;
        Ok(str::from_utf8(&slice[0..string_size as usize])?.into())
    }
}

#[cfg(test)]
mod tests {
    extern crate rand;
    use self::rand::random;
    use super::{deserialize, serialize};
    use index::config::{IndexType, ValueMode};
    use index::tree::{Leaf, Node, NodeRef, Nodes, Value};
    use persy::RecRef;
    use std::fmt::Debug;

    fn random_pointer() -> NodeRef {
        RecRef::new(random::<u64>(), random::<u32>())
    }

    #[test]
    fn test_serialization_deserialization_nodes() {
        let val1 = random_pointer();
        let val2 = random_pointer();
        let val3 = random_pointer();
        let mut node = Nodes::new_from_split(val1, &vec![(0, val2)]);
        let pos = node.find(&2).pos;
        node.add(pos, &2, val3.clone());
        let value = serialize::<u8, u8>(Node::NODE(node)).expect("serialization works");
        let read = deserialize::<u8, u8>(&value).expect("deserialzie successfully");
        match read {
            Node::NODE(n) => {
                assert_eq!(n.keys.len(), 2);
                assert_eq!(n.pointers.len(), 3);
            }
            _ => panic!("expected a node"),
        }
    }

    fn single_type_leaf_test<K: IndexType + Debug, V: IndexType + Debug>(key: K, value: V, value1: V) {
        let mut leaf = Leaf::new();
        leaf.insert_or_update(&key, &value, ValueMode::REPLACE, "deserialization error")
            .expect("insert work");
        let binary = serialize::<K, V>(Node::LEAF(leaf)).expect("serialization works");
        let read = deserialize::<K, V>(&binary).expect("deserialize successfully");
        match read {
            Node::LEAF(n) => {
                assert_eq!(n.entries.len(), 1);
                match n.entries[0].value {
                    Value::SINGLE(ref iv) => assert_eq!(iv, &value),
                    _ => panic!("expected SINGLE"),
                }
            }
            _ => panic!("expected a leaf"),
        }
        let mut leaf_many = Leaf::new();
        leaf_many
            .insert_or_update(&key, &value, ValueMode::CLUSTER, "deserialization error")
            .expect("insert work");
        leaf_many
            .insert_or_update(&key, &value1, ValueMode::CLUSTER, "deserialization error")
            .expect("insert work");
        let binary = serialize::<K, V>(Node::LEAF(leaf_many)).expect("serialization works");
        let read = deserialize::<K, V>(&binary).expect("deserialize successfully");
        match read {
            Node::LEAF(n) => {
                assert_eq!(n.entries.len(), 1);
                match n.entries[0].value {
                    Value::CLUSTER(ref iv) => {
                        assert_eq!(iv, &vec![value, value1]);
                    }
                    _ => panic!("expected CLUSTER"),
                }
            }
            _ => panic!("expected a leaf"),
        }
    }

    #[test]
    fn test_serialization_deserialization_leafs() {
        single_type_leaf_test::<u8, u8>(20, 10, 20);
        single_type_leaf_test::<u16, u16>(20, 10, 20);
        single_type_leaf_test::<u32, u32>(20, 10, 20);
        single_type_leaf_test::<u64, u64>(20, 10, 20);
        single_type_leaf_test::<i8, i8>(20, 10, 20);
        single_type_leaf_test::<i16, i16>(20, 10, 20);
        single_type_leaf_test::<i32, i32>(20, 10, 20);
        single_type_leaf_test::<i64, i64>(20, 10, 20);
        //TODO: understand why f32 and f64 do not implement Ord
        //single_type_leaf_test::<f32,f32>(20.0,10.0,20.0);
        //single_type_leaf_test::<f64,f64>(20.0,10.0,20.0);
        single_type_leaf_test::<String, String>("o".to_string(), "a".to_string(), "b".to_string());
        single_type_leaf_test::<i32, String>(10, "a".to_string(), "b".to_string());
        single_type_leaf_test::<String, i32>("a".to_string(), 10, 20);
    }

}