1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
#[allow(unused_imports)]
use crate::structure::matrix::*;
#[allow(unused_imports)]
use crate::structure::polynomial::*;
#[allow(unused_imports)]
use crate::structure::vector::*;
use crate::traits::num::PowOps;
#[allow(unused_imports)]
use crate::util::non_macro::*;
#[cfg(feature = "serde")]
use serde::{Deserialize, Serialize};
use std::cmp::{max, min};
use std::convert::{From, Into};
use std::ops::{Index, Range};

/// Cubic Spline (Natural)
///
/// # Description
///
/// Implement traits of Natural cubic splines, Arne Morten Kvarving.
///
/// # Type
/// (Vec<f64>, Vec<f64>) -> Vec<Polynomial>
///
/// # Examples
/// ```
/// #[macro_use]
/// extern crate peroxide;
/// use peroxide::fuga::*;
///
/// fn main() {
///     let x = c!(0.9, 1.3, 1.9, 2.1);
///     let y = c!(1.3, 1.5, 1.85, 2.1);
///
///     let s = cubic_spline(x, y);
///
///     for i in 0 .. s.len() {
///         s[i].print();
///     }
///
///     // -0.2347x^3 + 0.6338x^2 - 0.0329x + 0.9873
///     // 0.9096x^3 - 3.8292x^2 + 5.7691x - 1.5268
///     // -2.2594x^3 + 14.2342x^2 - 28.5513x + 20.2094
/// }
/// ```
pub fn cubic_spline(node_x: Vec<f64>, node_y: Vec<f64>) -> Vec<Polynomial> {
    let spline = CubicSpline::from_nodes(node_x, node_y);
    spline.into()
}

/// Cubic Spline (Natural)
#[derive(Debug, Clone, Default)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub struct CubicSpline {
    polynomials: Vec<(Range<f64>, Polynomial)>,
}

impl CubicSpline {
    /// # Examples
    /// ```
    /// #[macro_use]
    /// extern crate peroxide;
    /// use peroxide::fuga::*;
    ///
    /// fn main() {
    ///     let x = c!(0.9, 1.3, 1.9, 2.1);
    ///     let y = c!(1.3, 1.5, 1.85, 2.1);
    ///
    ///     let s = CubicSpline::from_nodes(x, y);
    ///
    ///     for i in 0 .. 4 {
    ///         println!("{}", s.eval(i as f64 / 2.0));
    ///     }
    /// }
    /// ```
    pub fn from_nodes(node_x: Vec<f64>, node_y: Vec<f64>) -> Self {
        let polynomials = CubicSpline::cubic_spline(&node_x, &node_y);
        CubicSpline {
            polynomials: CubicSpline::ranged(&node_x, polynomials),
        }
    }

    fn ranged(node_x: &Vec<f64>, polynomials: Vec<Polynomial>) -> Vec<(Range<f64>, Polynomial)> {
        let len = node_x.len();
        polynomials
            .into_iter()
            .enumerate()
            .filter(|(i, _)| i + 1 < len)
            .map(|(i, polynomial)| {
                (
                    Range {
                        start: node_x[i],
                        end: node_x[i + 1],
                    },
                    polynomial,
                )
            })
            .collect()
    }

    fn cubic_spline(node_x: &Vec<f64>, node_y: &Vec<f64>) -> Vec<Polynomial> {
        //! Pre calculated variables
        //! node_x: n+1
        //! node_y: n+1
        //! h     : n
        //! b     : n
        //! v     : n
        //! u     : n
        //! z     : n+1
        let n = node_x.len() - 1;
        assert_eq!(n, node_y.len() - 1);

        // Pre-calculations
        let mut h = vec![0f64; n];
        let mut b = vec![0f64; n];
        let mut v = vec![0f64; n];
        let mut u = vec![0f64; n];
        for i in 0..n {
            if i == 0 {
                h[i] = node_x[i + 1] - node_x[i];
                b[i] = (node_y[i + 1] - node_y[i]) / h[i];
            } else {
                h[i] = node_x[i + 1] - node_x[i];
                b[i] = (node_y[i + 1] - node_y[i]) / h[i];
                v[i] = 2. * (h[i] + h[i - 1]);
                u[i] = 6. * (b[i] - b[i - 1]);
            }
        }

        // Tri-diagonal matrix
        let mut m = matrix(vec![0f64; (n - 1) * (n - 1)], n - 1, n - 1, Col);
        for i in 0..n - 2 {
            m[(i, i)] = v[i + 1];
            m[(i + 1, i)] = h[i + 1];
            m[(i, i + 1)] = h[i + 1];
        }
        m[(n - 2, n - 2)] = v[n - 1];

        // Calculate z
        let z_inner = m.inv() * Vec::from(&u[1..]);
        let mut z = vec![0f64];
        z.extend(&z_inner);
        z.push(0f64);

        // Declare empty spline
        let mut s: Vec<Polynomial> = Vec::new();

        // Main process
        for i in 0..n {
            // Memoization
            let t_i = node_x[i];
            let t_i1 = node_x[i + 1];
            let z_i = z[i];
            let z_i1 = z[i + 1];
            let h_i = h[i];
            let y_i = node_y[i];
            let y_i1 = node_y[i + 1];
            let temp1 = poly(vec![1f64, -t_i]);
            let temp2 = poly(vec![1f64, -t_i1]);

            let term1 = temp1.powi(3) * (z_i1 / (6f64 * h_i));
            let term2 = temp2.powi(3) * (-z_i / (6f64 * h_i));
            let term3 = temp1 * (y_i1 / h_i - z_i1 * h_i / 6.);
            let term4 = temp2 * (-y_i / h_i + h_i * z_i / 6.0);

            s.push(term1 + term2 + term3 + term4);
        }
        return s;
    }

    /// Evaluate cubic spline with value
    ///
    /// # Examples
    /// ```
    /// #[macro_use]
    /// extern crate peroxide;
    /// use peroxide::fuga::*;
    ///
    /// fn main() {
    ///     let x = c!(0.9, 1.3, 1.9, 2.1);
    ///     let y = c!(1.3, 1.5, 1.85, 2.1);
    ///
    ///     let s = CubicSpline::from_nodes(x, y);
    ///
    ///     s.eval(2.0);
    /// }
    /// ```
    pub fn eval<T>(&self, x: T) -> f64
    where
        T: std::convert::Into<f64> + Copy,
    {
        let x = x.into();

        self.polynomial(x).eval(x)
    }

    /// Returns a reference the `Polynomial` at the given point `x`.
    ///
    /// # Examples
    /// ```
    /// #[macro_use]
    /// extern crate peroxide;
    /// use peroxide::fuga::*;
    ///
    /// fn main() {
    ///     let x = c!(0.9, 1.3, 1.9, 2.1);
    ///     let y = c!(1.3, 1.5, 1.85, 2.1);
    ///
    ///     let s = CubicSpline::from_nodes(x, y);
    ///
    ///     let p = s.polynomial(2.0);
    ///     let v = p.eval(1.9);
    ///
    ///     assert_eq!((v * 100.0).round() / 100.0, 1.85)
    /// }
    /// ```
    ///
    /// If `x` is outside of the range of polynomials, the first or last polynomial will be
    /// returned, depending if `x` is lower of the first interpolation point or higher of the last
    /// interpolation point.
    pub fn polynomial<T>(&self, x: T) -> &Polynomial
    where
        T: std::convert::Into<f64> + Copy,
    {
        let x = x.into();

        let index = match self.polynomials.binary_search_by(|(range, _)| {
            if range.contains(&x) {
                core::cmp::Ordering::Equal
            } else if x < range.start {
                core::cmp::Ordering::Greater
            } else {
                core::cmp::Ordering::Less
            }
        }) {
            Ok(index) => index,
            Err(index) => max(0, min(index, self.polynomials.len() - 1)),
        };

        &self.polynomials[index].1
    }

    /// Extends the spline with the given nodes.
    ///
    /// The method ensures that the transition between each polynomial is smooth and that the spline
    /// interpolation of the new nodes is calculated around `x = 0` in order to avoid that
    /// successive spline extensions with large x values become inaccurate.
    pub fn extend_with_nodes(&mut self, node_x: Vec<f64>, node_y: Vec<f64>) {
        let mut ext_node_x = Vec::with_capacity(node_x.len() + 1);
        let mut ext_node_y = Vec::with_capacity(node_x.len() + 1);

        let (r, polynomial) = &self.polynomials[self.polynomials.len() - 1];
        ext_node_x.push(0.0f64);
        ext_node_y.push(polynomial.eval(r.end));

        // translating the node towards x = 0 increases accuracy tremendously
        let tx = r.end;
        ext_node_x.extend(node_x.into_iter().map(|x| x - tx));
        ext_node_y.extend(node_y);

        let polynomials = CubicSpline::ranged(
            &ext_node_x,
            CubicSpline::cubic_spline(&ext_node_x, &ext_node_y),
        );

        self.polynomials
            .extend(polynomials.into_iter().map(|(r, p)| {
                (
                    Range {
                        start: r.start + tx,
                        end: r.end + tx,
                    },
                    p.translate_x(tx),
                )
            }));
    }

    /// Returns the number of polynimials that describe the `CubicSpline`
    ///
    /// # Examples
    /// ```
    /// #[macro_use]
    /// extern crate peroxide;
    /// use peroxide::fuga::*;
    ///
    /// fn main() {
    ///     let x = c!(0.9, 1.3, 1.9, 2.1);
    ///     let y = c!(1.3, 1.5, 1.85, 2.1);
    ///
    ///     let s = CubicSpline::from_nodes(x, y);
    ///
    ///     assert_eq!(s.number_of_polynomials(), 3);
    /// }
    /// ```
    pub fn number_of_polynomials(&self) -> usize {
        self.polynomials.len()
    }
}

impl std::convert::Into<Vec<Polynomial>> for CubicSpline {
    fn into(self) -> Vec<Polynomial> {
        self.polynomials
            .into_iter()
            .map(|(_, polynomial)| polynomial)
            .collect()
    }
}

impl From<Vec<(Range<f64>, Polynomial)>> for CubicSpline {
    fn from(polynomials: Vec<(Range<f64>, Polynomial)>) -> Self {
        CubicSpline { polynomials }
    }
}

impl Into<Vec<(Range<f64>, Polynomial)>> for CubicSpline {
    fn into(self) -> Vec<(Range<f64>, Polynomial)> {
        self.polynomials
    }
}

impl Index<usize> for CubicSpline {
    type Output = (Range<f64>, Polynomial);

    fn index(&self, index: usize) -> &Self::Output {
        &self.polynomials[index]
    }
}

impl Calculus for CubicSpline {
    fn diff(&self) -> Self {
        let mut polynomials: Vec<(Range<f64>, Polynomial)> = self.clone().into();

        polynomials = polynomials
            .into_iter()
            .map(|(r, poly)| (r, poly.diff()))
            .collect();

        Self::from(polynomials)
    }

    fn integral(&self) -> Self {
        let mut polynomials: Vec<(Range<f64>, Polynomial)> = self.clone().into();

        polynomials = polynomials
            .into_iter()
            .map(|(r, poly)| (r, poly.integral()))
            .collect();

        Self::from(polynomials)
    }
}