1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
#![allow(dead_code)]

/// A 3D affine transformation matrix
#[derive(Debug, Clone, PartialEq)]
pub struct TransformationMatrix {
    matrix: [[f64; 4]; 3],
}

impl TransformationMatrix {
    /// Get the raw matrix (row major order)
    pub fn matrix(&self) -> [[f64; 4]; 3] {
        self.matrix
    }

    /// Set the raw matrix (row major order), the user needs to make sure the matrix is valid
    pub fn set_matrix(&mut self, new_matrix: [[f64; 4]; 3]) {
        self.matrix = new_matrix;
    }

    /// Create a matrix defining identity, so no transformation
    pub fn identity() -> Self {
        TransformationMatrix {
            matrix: [
                [1.0, 0.0, 0.0, 0.0],
                [0.0, 1.0, 0.0, 0.0],
                [0.0, 0.0, 1.0, 0.0],
            ],
        }
    }

    /// Create a matrix with the given matrix
    pub fn from_matrix(matrix: [[f64; 4]; 3]) -> Self {
        TransformationMatrix { matrix }
    }

    /// Create a matrix defining a rotation around the X axis
    /// ## Arguments
    /// * `deg` the rotation in degrees
    /// ## Panics
    /// It panics if `deg` is not finite (`f64.is_finite()`)
    pub fn rotation_x(deg: f64) -> Self {
        assert!(deg.is_finite(), "The amount of degrees is not finite");
        let (s, c) = deg.to_radians().sin_cos();
        TransformationMatrix {
            matrix: [[1.0, 0.0, 0.0, 0.0], [0.0, c, -s, 0.0], [0.0, s, c, 0.0]],
        }
    }

    /// Create a matrix defining a rotation around the Y axis
    /// ## Arguments
    /// * `deg` the rotation in degrees
    /// ## Panics
    /// It panics if `deg` is not finite (`f64.is_finite()`)
    pub fn rotation_y(deg: f64) -> Self {
        assert!(deg.is_finite(), "The amount of degrees is not finite");
        let (s, c) = deg.to_radians().sin_cos();
        TransformationMatrix {
            matrix: [[c, 0.0, s, 0.0], [0.0, 1.0, 0.0, 0.0], [-s, 0.0, c, 0.0]],
        }
    }

    /// Create a matrix defining a rotation around the Z axis
    /// ## Arguments
    /// * `deg` the rotation in degrees
    /// ## Panics
    /// It panics if `deg` is not finite (`f64.is_finite()`)
    pub fn rotation_z(deg: f64) -> Self {
        assert!(deg.is_finite(), "The amount of degrees is not finite");
        let c = deg.to_radians().cos();
        let s = deg.to_radians().sin();
        TransformationMatrix {
            matrix: [[c, -s, 0.0, 0.0], [s, c, 0.0, 0.0], [0.0, 0.0, 1.0, 0.0]],
        }
    }

    /// Create a matrix defining a translation
    /// ## Panics
    /// It panics if any of the arguments is not finite (`f64.is_finite()`)
    pub fn translation(x: f64, y: f64, z: f64) -> Self {
        assert!(
            x.is_finite() && y.is_finite() && z.is_finite(),
            "One or more of the arguments is not finite"
        );
        TransformationMatrix {
            matrix: [[1.0, 0.0, 0.0, x], [0.0, 1.0, 0.0, y], [0.0, 0.0, 1.0, z]],
        }
    }

    /// Create a matrix defining a magnification
    /// ## Arguments
    /// * `f` the factor where 1.0 is the original size
    /// ## Panics
    /// It panics if `f` is not finite (`f64.is_finite()`)
    pub fn magnify(f: f64) -> Self {
        assert!(f.is_finite(), "The factor is not finite");
        TransformationMatrix {
            matrix: [[f, 0.0, 0.0, 0.0], [0.0, f, 0.0, 0.0], [0.0, 0.0, f, 0.0]],
        }
    }

    /// This multiplies the translation with the given factors, this can be used to
    /// convert fractional units into absolute units.
    pub fn multiply_translation(&mut self, factors: (f64, f64, f64)) {
        self.matrix[0][3] *= factors.0;
        self.matrix[1][3] *= factors.1;
        self.matrix[2][3] *= factors.2;
    }

    /// Apply this transformation to the given position.
    /// It returns the new position.
    /// ## Arguments
    /// * `pos` the position (x, y, z)
    pub fn apply(&self, pos: (f64, f64, f64)) -> (f64, f64, f64) {
        (
            pos.0 * self.matrix[0][0]
                + pos.1 * self.matrix[0][1]
                + pos.2 * self.matrix[0][2]
                + self.matrix[0][3],
            pos.0 * self.matrix[1][0]
                + pos.1 * self.matrix[1][1]
                + pos.2 * self.matrix[1][2]
                + self.matrix[1][3],
            pos.0 * self.matrix[2][0]
                + pos.1 * self.matrix[2][1]
                + pos.2 * self.matrix[2][2]
                + self.matrix[2][3],
        )
    }

    /// Combine this transformation with another transformation to deliver a new transformation.
    /// This transformation is applied before the other transformation.
    pub fn combine(&self, other: &Self) -> Self {
        TransformationMatrix {
            matrix: [
                [
                    other.matrix[0][0] * self.matrix[0][0]
                        + other.matrix[0][1] * self.matrix[1][0]
                        + other.matrix[0][2] * self.matrix[2][0],
                    other.matrix[0][0] * self.matrix[0][1]
                        + other.matrix[0][1] * self.matrix[1][1]
                        + other.matrix[0][2] * self.matrix[2][1],
                    other.matrix[0][0] * self.matrix[0][2]
                        + other.matrix[0][1] * self.matrix[1][2]
                        + other.matrix[0][2] * self.matrix[2][2],
                    other.matrix[0][0] * self.matrix[0][3]
                        + other.matrix[0][1] * self.matrix[1][3]
                        + other.matrix[0][2] * self.matrix[2][3]
                        + other.matrix[0][3],
                ],
                [
                    other.matrix[1][0] * self.matrix[0][0]
                        + other.matrix[1][1] * self.matrix[1][0]
                        + other.matrix[1][2] * self.matrix[2][0],
                    other.matrix[1][0] * self.matrix[0][1]
                        + other.matrix[1][1] * self.matrix[1][1]
                        + other.matrix[1][2] * self.matrix[2][1],
                    other.matrix[1][0] * self.matrix[0][2]
                        + other.matrix[1][1] * self.matrix[1][2]
                        + other.matrix[1][2] * self.matrix[2][2],
                    other.matrix[1][0] * self.matrix[0][3]
                        + other.matrix[1][1] * self.matrix[1][3]
                        + other.matrix[1][2] * self.matrix[2][3]
                        + other.matrix[1][3],
                ],
                [
                    other.matrix[2][0] * self.matrix[0][0]
                        + other.matrix[2][1] * self.matrix[1][0]
                        + other.matrix[2][2] * self.matrix[2][0],
                    other.matrix[2][0] * self.matrix[0][1]
                        + other.matrix[2][1] * self.matrix[1][1]
                        + other.matrix[2][2] * self.matrix[2][1],
                    other.matrix[2][0] * self.matrix[0][2]
                        + other.matrix[2][1] * self.matrix[1][2]
                        + other.matrix[2][2] * self.matrix[2][2],
                    other.matrix[2][0] * self.matrix[0][3]
                        + other.matrix[2][1] * self.matrix[1][3]
                        + other.matrix[2][2] * self.matrix[2][3]
                        + other.matrix[2][3],
                ],
            ],
        }
    }
}

#[cfg(test)]
mod tests {
    use super::TransformationMatrix;

    #[test]
    fn identity() {
        let pos = (1.0, 1.0, 1.0);
        let new_pos = TransformationMatrix::identity().apply(pos);
        assert_eq!(pos, new_pos);
    }

    #[test]
    fn combination() {
        let pos = (10.0, 0.0, 0.0);
        let new_pos = TransformationMatrix::rotation_y(90.0)
            .combine(&TransformationMatrix::translation(0.0, 0.0, 10.0))
            .apply(pos);
        assert!(close_tuple(new_pos, (0.0, 0.0, 0.0)));
    }
    #[test]
    fn rot_x() {
        // 90 deg y
        let pos = (0.0, 10.0, 0.0);
        let new_pos = TransformationMatrix::rotation_x(90.0).apply(pos);
        println!("{:?}", new_pos);
        assert!(close_tuple(new_pos, (0.0, 0.0, 10.0)));
        // 90 deg z
        let pos = (0.0, 0.0, 10.0);
        let new_pos = TransformationMatrix::rotation_x(90.0).apply(pos);
        println!("{:?}", new_pos);
        assert!(close_tuple(new_pos, (0.0, -10.0, 0.0)));
        // -90 deg z
        let pos = (0.0, 0.0, 10.0);
        let new_pos = TransformationMatrix::rotation_x(-90.0).apply(pos);
        println!("{:?}", new_pos);
        assert!(close_tuple(new_pos, (0.0, 10.0, 0.0)));
        // 180 deg z
        let pos = (0.0, 0.0, 10.0);
        let new_pos = TransformationMatrix::rotation_x(180.0).apply(pos);
        println!("{:?}", new_pos);
        assert!(close_tuple(new_pos, (0.0, 0.0, -10.0)));
        // -180 deg z
        let pos = (0.0, 0.0, 10.0);
        let new_pos = TransformationMatrix::rotation_x(-180.0).apply(pos);
        println!("{:?}", new_pos);
        assert!(close_tuple(new_pos, (0.0, 0.0, -10.0)));
        // 360 deg z
        let pos = (0.0, 0.0, 10.0);
        let new_pos = TransformationMatrix::rotation_x(360.0).apply(pos);
        println!("{:?}", new_pos);
        assert!(close_tuple(new_pos, (0.0, 0.0, 10.0)));
        // 44.5 deg z
        let pos = (0.0, 0.0, -1.0);
        let new_pos = TransformationMatrix::rotation_x(44.5).apply(pos);
        let end = (
            0.0,
            44.5_f64.to_radians().sin(),
            -44.5_f64.to_radians().cos(),
        );
        println!("{:?} vs {:?}", new_pos, end);
        assert!(close_tuple(new_pos, end));
        // 44.5 + 45.5 deg z
        let pos = (0.0, 0.0, -1.0);
        let new_pos = TransformationMatrix::rotation_x(44.5)
            .combine(&TransformationMatrix::rotation_x(45.5))
            .apply(pos);
        println!("{:?}", new_pos);
        assert!(close_tuple(new_pos, (0.0, 1.0, 0.0)));
    }
    #[test]
    fn rot_y() {
        // 90 deg x
        let pos = (10.0, 0.0, 0.0);
        let new_pos = TransformationMatrix::rotation_y(90.0).apply(pos);
        println!("{:?}", new_pos);
        assert!(close_tuple(new_pos, (0.0, 0.0, -10.0)));
        // 90 deg z
        let pos = (0.0, 0.0, 10.0);
        let new_pos = TransformationMatrix::rotation_y(90.0).apply(pos);
        println!("{:?}", new_pos);
        assert!(close_tuple(new_pos, (10.0, 0.0, 0.0)));
        // -90 deg z
        let pos = (0.0, 0.0, 10.0);
        let new_pos = TransformationMatrix::rotation_y(-90.0).apply(pos);
        println!("{:?}", new_pos);
        assert!(close_tuple(new_pos, (-10.0, 0.0, 0.0)));
        // 180 deg z
        let pos = (0.0, 0.0, 10.0);
        let new_pos = TransformationMatrix::rotation_y(180.0).apply(pos);
        println!("{:?}", new_pos);
        assert!(close_tuple(new_pos, (0.0, 0.0, -10.0)));
        // -180 deg z
        let pos = (0.0, 0.0, 10.0);
        let new_pos = TransformationMatrix::rotation_y(-180.0).apply(pos);
        println!("{:?}", new_pos);
        assert!(close_tuple(new_pos, (0.0, 0.0, -10.0)));
        // 360 deg z
        let pos = (0.0, 0.0, 10.0);
        let new_pos = TransformationMatrix::rotation_y(360.0).apply(pos);
        println!("{:?}", new_pos);
        assert!(close_tuple(new_pos, (0.0, 0.0, 10.0)));
        // 44.5 deg z
        let pos = (0.0, 0.0, -1.0);
        let new_pos = TransformationMatrix::rotation_y(44.5).apply(pos);
        let end = (
            -44.5_f64.to_radians().sin(),
            0.0,
            -44.5_f64.to_radians().cos(),
        );
        println!("{:?} vs {:?}", new_pos, end);
        assert!(close_tuple(new_pos, end));
        // 44.5 + 45.5 deg z
        let pos = (0.0, 0.0, -1.0);
        let new_pos = TransformationMatrix::rotation_y(44.5)
            .combine(&TransformationMatrix::rotation_y(45.5))
            .apply(pos);
        println!("{:?}", new_pos);
        assert!(close_tuple(new_pos, (-1.0, 0.0, 0.0)));
    }

    #[test]
    fn rot_z() {
        // 90 deg x
        let pos = (10.0, 0.0, 0.0);
        let new_pos = TransformationMatrix::rotation_z(90.0).apply(pos);
        println!("{:?}", new_pos);
        assert!(close_tuple(new_pos, (0.0, 10.0, 0.0)));
        // 90 deg y
        let pos = (0.0, 10.0, 0.0);
        let new_pos = TransformationMatrix::rotation_z(90.0).apply(pos);
        println!("{:?}", new_pos);
        assert!(close_tuple(new_pos, (-10.0, 0.0, 0.0)));
        // -90 deg y
        let pos = (0.0, 10.0, 0.0);
        let new_pos = TransformationMatrix::rotation_z(-90.0).apply(pos);
        println!("{:?}", new_pos);
        assert!(close_tuple(new_pos, (10.0, 0.0, 0.0)));
        // 180 deg y
        let pos = (0.0, 10.0, 0.0);
        let new_pos = TransformationMatrix::rotation_z(180.0).apply(pos);
        println!("{:?}", new_pos);
        assert!(close_tuple(new_pos, (0.0, -10.0, 0.0)));
        // -180 deg y
        let pos = (0.0, 10.0, 0.0);
        let new_pos = TransformationMatrix::rotation_z(-180.0).apply(pos);
        println!("{:?}", new_pos);
        assert!(close_tuple(new_pos, (0.0, -10.0, 0.0)));
        // 360 deg x
        let pos = (10.0, 0.0, 0.0);
        let new_pos = TransformationMatrix::rotation_z(360.0).apply(pos);
        println!("{:?}", new_pos);
        assert!(close_tuple(new_pos, (10.0, 0.0, 0.0)));
        // 44.5 deg y
        let pos = (0.0, -1.0, 0.0);
        let new_pos = TransformationMatrix::rotation_z(44.5).apply(pos);
        let end = (
            44.5_f64.to_radians().sin(),
            -44.5_f64.to_radians().cos(),
            0.0,
        );
        println!("{:?} vs {:?}", new_pos, end);
        assert!(close_tuple(new_pos, end));
        // 44.5 + 45.5 deg y
        let pos = (0.0, -1.0, 0.0);
        let new_pos = TransformationMatrix::rotation_z(44.5)
            .combine(&TransformationMatrix::rotation_z(45.5))
            .apply(pos);
        println!("{:?}", new_pos);
        assert!(close_tuple(new_pos, (1.0, 0.0, 0.0)));
    }

    #[test]
    fn translation() {
        let pos = (10.0, 0.0, 0.0);
        let new_pos = TransformationMatrix::translation(-10.0, 0.0, 0.0).apply(pos);
        assert!(close_tuple(new_pos, (0.0, 0.0, 0.0)));
        let pos = (-897.0, 0.0023, 1.0);
        let new_pos = TransformationMatrix::translation(897.0, -0.0023, -1.0).apply(pos);
        assert!(close_tuple(new_pos, (0.0, 0.0, 0.0)));
        let pos = (0.0, 0.0, 0.0);
        let new_pos = TransformationMatrix::translation(0.0, 0.0, 0.0).apply(pos);
        assert!(close_tuple(new_pos, (0.0, 0.0, 0.0)));
    }

    #[test]
    fn magnification() {
        let pos = (10.0, 0.0, 0.0);
        let new_pos = TransformationMatrix::magnify(10.0).apply(pos);
        assert!(close_tuple(new_pos, (100.0, 0.0, 0.0)));
        let pos = (-897.0, 0.0023, 1.0);
        let new_pos = TransformationMatrix::magnify(0.1).apply(pos);
        assert!(close_tuple(new_pos, (-89.7, 0.00023, 0.1)));
        let pos = (0.0, 1.0, 0.0);
        let new_pos = TransformationMatrix::magnify(2.5).apply(pos);
        assert!(close_tuple(new_pos, (0.0, 2.5, 0.0)));
    }

    #[test]
    fn multiply_translation() {
        let pos = (0.0, 0.0, 0.0);
        let mut matrix = TransformationMatrix::translation(1.0, 2.0, -5.0);
        matrix.multiply_translation((10.0, 5.0, -2.0));
        let new_pos = matrix.apply(pos);
        assert!(close_tuple(new_pos, (10.0, 10.0, 10.0)));
        assert_eq!(
            matrix.matrix(),
            TransformationMatrix::translation(10.0, 10.0, 10.0).matrix()
        );
    }

    #[test]
    fn matrix() {
        let normal = TransformationMatrix::rotation_x(45.0);
        let raw = normal.matrix();
        let from_matrix = TransformationMatrix::from_matrix(raw.clone());
        let mut set = TransformationMatrix::identity();
        set.set_matrix(raw);
        assert_eq!(normal, from_matrix);
        assert_eq!(from_matrix, set);
        assert_eq!(normal, set);
    }

    fn close_tuple(a: (f64, f64, f64), b: (f64, f64, f64)) -> bool {
        close(a.0, b.0) && close(a.1, b.1) && close(a.2, b.2)
    }

    fn close(a: f64, b: f64) -> bool {
        (a - b) > -0.0000001 && (a - b) < 0.0000001
    }
}