1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
// Copyright 2018 pdb Developers
//
// Licensed under the Apache License, Version 2.0, <LICENSE-APACHE or
// http://apache.org/licenses/LICENSE-2.0> or the MIT license <LICENSE-MIT or
// http://opensource.org/licenses/MIT>, at your option. This file may not be
// copied, modified, or distributed except according to those terms.

//! Utilities for translating addresses between PDB offsets and _Relative Virtual Addresses_ (RVAs).

use std::cmp::{self, Ordering};
use std::fmt;
use std::iter::FusedIterator;
use std::mem;
use std::ops::Range;

use crate::common::*;
use crate::msf::Stream;
use crate::pe::ImageSectionHeader;

/// A address translation record from an `OMAPTable`.
///
/// This record applies to the half-open interval [ `record.source_address`,
/// `next_record.source_address` ).
#[repr(C)]
#[derive(Clone, Copy, Eq, PartialEq)]
pub(crate) struct OMAPRecord {
    source_address: u32,
    target_address: u32,
}

impl OMAPRecord {
    /// Create a new OMAP record for the given mapping.
    pub fn new(source_address: u32, target_address: u32) -> Self {
        Self {
            source_address: source_address.to_le(),
            target_address: target_address.to_le(),
        }
    }

    /// Returns the address in the source space.
    #[inline]
    pub fn source_address(self) -> u32 {
        u32::from_le(self.source_address)
    }

    /// Returns the start of the mapped portion in the target address space.
    #[inline]
    pub fn target_address(self) -> u32 {
        u32::from_le(self.target_address)
    }

    /// Translate the given address into the target address space.
    #[inline]
    fn translate(self, address: u32) -> u32 {
        // This method is only to be used internally by the OMAP iterator and lookups. The caller
        // must verify that the record is valid to translate an address.
        debug_assert!(self.source_address() <= address);
        (address - self.source_address()) + self.target_address()
    }
}

impl fmt::Debug for OMAPRecord {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_struct("OMAPRecord")
            .field(
                "source_address",
                &format_args!("{:#010x}", self.source_address()),
            )
            .field(
                "target_address",
                &format_args!("{:#010x}", self.target_address()),
            )
            .finish()
    }
}

impl PartialOrd for OMAPRecord {
    #[inline]
    fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
        self.source_address().partial_cmp(&other.source_address())
    }
}

impl Ord for OMAPRecord {
    #[inline]
    fn cmp(&self, other: &Self) -> Ordering {
        self.source_address().cmp(&other.source_address())
    }
}

/// PDBs can contain OMAP tables, which translate relative virtual addresses (RVAs) from one address
/// space into another.
///
/// For more information on the pratical use of OMAPs, see the [module level documentation] and
/// [`AddressMap`]. A PDB can contain two OMAPs:
///
///  - `omap_from_src`: A mapping from the original address space to the transformed address space
///    of an optimized binary. Use `PDB::omap_from_src` to obtain an instance of this OMAP. Also,
///    `PdbInternalRva::rva` performs this conversion in a safe manner.
///  - `omap_to_src`: A mapping from the transformed address space back into the original address
///    space of the unoptimized binary. Use `PDB::omap_to_src` to obtain an instace of this OMAP.
///    Also, `Rva::original_rva` performs this conversion in a safe manner.
///
/// # Structure
///
/// OMAP tables are dense arrays, sequentially storing `OMAPRecord` structs sorted by source
/// address.
///
/// Each record applies to a range of addresses: i.e. record N indicates that addresses in the
/// half-open interval [ `record[n].source_address`, `record[n+1].source_address` ) were relocated
/// to a starting address of `record[n].target_address`. If `target_address` is zero, the `lookup()`
/// will return None, since this indicates a non-existent location in the target address space.
///
/// Given that the table is sorted, lookups by source address can be efficiently serviced using a
/// binary search directly against the underlying data without secondary data structures. This is
/// not the most cache efficient data structure (especially given that half of each cache line is
/// storing target addresses), but given that OMAP tables are an uncommon PDBs feature, the obvious
/// binary search implementation seems appropriate.
///
/// [module level documentation]: self
pub(crate) struct OMAPTable<'s> {
    stream: Stream<'s>,
}

impl<'s> OMAPTable<'s> {
    pub(crate) fn parse(stream: Stream<'s>) -> Result<Self> {
        match cast_aligned::<OMAPRecord>(stream.as_slice()) {
            Some(_) => Ok(OMAPTable { stream }),
            None => Err(Error::InvalidStreamLength("OMAP")),
        }
    }

    /// Returns a direct view onto the records stored in this OMAP table.
    #[inline]
    pub fn records(&self) -> &[OMAPRecord] {
        // alignment is checked during parsing, unwrap is safe.
        cast_aligned(self.stream.as_slice()).unwrap()
    }

    /// Look up `source_address` to yield a target address.
    pub fn lookup(&self, source_address: u32) -> Option<u32> {
        let records = self.records();

        let index = match records.binary_search_by_key(&source_address, |r| r.source_address()) {
            Ok(i) => i,
            Err(0) => return None,
            Err(i) => i - 1,
        };

        let record = records[index];

        // As a special case, `target_address` can be zero, which indicates that the
        // `source_address` does not exist in the target address space.
        if record.target_address() == 0 {
            return None;
        }

        Some(record.translate(source_address))
    }

    /// Look up a the range `start..end` and iterate all mapped sub-ranges.
    pub fn lookup_range(&self, range: Range<u32>) -> RangeIter<'_> {
        let Range { start, end } = range;
        if end <= start {
            return RangeIter::empty();
        }

        let records = self.records();
        let (record, next) = match records.binary_search_by_key(&start, |r| r.source_address()) {
            Ok(i) => (records[i], &records[i + 1..]),
            // Insert a dummy record no indicate that the range before the first record is invalid.
            // The range might still overlap with the first record however, so attempt regular
            // iteration.
            Err(0) => (OMAPRecord::new(0, 0), records),
            Err(i) => (records[i - 1], &records[i..]),
        };

        RangeIter {
            records: next.iter(),
            record,
            addr: start,
            end,
        }
    }
}

impl fmt::Debug for OMAPTable<'_> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_tuple("OMAPTable").field(&self.records()).finish()
    }
}

/// An iterator over mapped target ranges in an OMAP.
pub(crate) struct RangeIter<'t> {
    /// Iterator over subsequent OMAP records.
    records: std::slice::Iter<'t, OMAPRecord>,
    /// The record that spans the current start address.
    record: OMAPRecord,
    /// The start address of the current subrange.
    addr: u32,
    /// The final end address of the (last sub-)range.
    end: u32,
}

impl<'t> RangeIter<'t> {
    /// Creates a `RangeIter` that does not yield any ranges.
    pub fn empty() -> Self {
        RangeIter {
            records: [].iter(),
            record: OMAPRecord::new(0, 0),
            addr: 0,
            end: 0,
        }
    }

    /// Creates a `RangeIter` that only yields the specified range.
    pub fn identity(range: Range<u32>) -> Self {
        // Declare the range `start..` as valid with an identity mapping. We cannot use `0..` here
        // since the target must be a non-zero value to be recognized as valid mapping. Since there
        // are no further records, a single subrange `start..end` will be considered.
        RangeIter {
            records: [].iter(),
            record: OMAPRecord::new(range.start, range.start),
            addr: range.start,
            end: range.end,
        }
    }
}

impl Default for RangeIter<'_> {
    fn default() -> Self {
        Self::empty()
    }
}

impl Iterator for RangeIter<'_> {
    type Item = Range<u32>;

    fn next(&mut self) -> Option<Self::Item> {
        while self.addr < self.end {
            // Pull the next record from the list. Since the current record is only valid up to the
            // next one, this will determine the end of the current sub slice. If there are no more
            // records, create an unmapped dummy record starting at the end of the source range.
            let next_record = match self.records.next() {
                Some(record) => *record,
                None => OMAPRecord::new(self.end, 0),
            };

            // Calculate the bounds of the current subrange and write it back for the next
            // iteration. Likewise, remember the next record as address translation base.
            let subrange_end = cmp::min(next_record.source_address(), self.end);
            let subrange_start = mem::replace(&mut self.addr, subrange_end);
            let last_record = mem::replace(&mut self.record, next_record);

            // Check for the validity of this sub-range or skip it silently:
            //  2. The sub range covered by the last OMAP record might be empty. This can be an
            //     artifact of a dummy record used when creating a new iterator.
            //  3. A `target_address` of zero indicates an unmapped address range.
            if subrange_start >= subrange_end || last_record.target_address() == 0 {
                continue;
            }

            let translated_start = last_record.translate(subrange_start);
            let translated_end = last_record.translate(subrange_end);
            return Some(translated_start..translated_end);
        }

        None
    }
}

impl FusedIterator for RangeIter<'_> {}

/// Iterator over [`Rva`] ranges returned by [`AddressMap::rva_ranges`].
pub struct RvaRangeIter<'t>(RangeIter<'t>);

impl Iterator for RvaRangeIter<'_> {
    type Item = Range<Rva>;

    fn next(&mut self) -> Option<Self::Item> {
        self.0.next().map(|range| Rva(range.start)..Rva(range.end))
    }
}

impl FusedIterator for RvaRangeIter<'_> {}

/// Iterator over [`PdbInternalRva`] ranges returned by [`AddressMap::internal_rva_ranges`].
pub struct PdbInternalRvaRangeIter<'t>(RangeIter<'t>);

impl Iterator for PdbInternalRvaRangeIter<'_> {
    type Item = Range<PdbInternalRva>;

    fn next(&mut self) -> Option<Self::Item> {
        self.0
            .next()
            .map(|range| PdbInternalRva(range.start)..PdbInternalRva(range.end))
    }
}

impl FusedIterator for PdbInternalRvaRangeIter<'_> {}

/// A mapping between addresses and offsets used in the PDB and PE file.
///
/// To obtain an instace of this address map, call `PDB::address_map`. It will determine the correct
/// translation mode and read all internal state from the PDB. Then use the conversion methods on
/// the address and offset types to translate addresses.
///
/// # Background
///
/// Addresses in PDBs are stored as offsets into sections of the PE file. The `AddressMap` contains
/// the PE's section headers to translate between the offsets and virtual addresses relative to the
/// image base (RVAs).
///
/// Additionally, Microsoft has been reordering the Windows system and application binaries to
/// optimize them for paging reduction, using a toolset reported to be derived from and/or built on
/// top of the [Vulcan research project]. Relatively little else is known about the tools or the
/// methods they use. Looking at Windows system binaries like `ntoskrnl.exe`, it is apparent that
/// their layout has been rearranged, and their respective symbol files contain _OMAP_ re-mapping
/// information. The [Microsoft Binary Technologies Projects] may be involved in this.
///
/// The internals of this transformation are not well understood. According to [1997 reference
/// material]:
///
/// > Yet another form of debug information is relatively new and undocumented, except for a few
/// > obscure references in `WINNT.H` and the Win32 SDK help. This type of information is known as
/// > OMAP. Apparently, as part of Microsoft's internal build procedure, small fragments of code in
/// > EXEs and DLLs are moved around to put the most commonly used code at the beginning of the code
/// > section. This presumably keeps the process memory working set as small as possible. However,
/// > when shifting around the blocks of code, the corresponding debug information isn't updated.
/// > Instead, OMAP information is created. It lets symbol table code translate between the original
/// > address in a symbol table and the modified address where the variable or line of code really
/// > exists in memory.
///
/// # Usage
///
/// To aid with translating addresses and offsets, this module exposes `AddressMap`, a helper that
/// contains all information to apply the correct translation of any kind of address or offset to
/// another. Due to the rearranging optimizations, there are four types involved:
///
///  - [`Rva`]: A _Relative Virtual Address_ in the actual binary. This address directly corresponds
///    to instruction pointers seen in stack traces and symbol addresses reported by debuggers.
///  - [`PdbInternalRva`]: An RVA as it would have appeared before the optimization. These RVAs are
///    used in some places and can be converted to an `Rva` in the actual address space.
///  - [`SectionOffset`]: An offset into a section of the actual binary. A `section` member of _n_
///    refers to section _n - 1_, which makes a section number of _0_ a null pointer.
///  - [`PdbInternalSectionOffset`]: An offset into a section of the original binary. These offsets
///    are used throughout the PDB and can be converted to either `SectionOffset`, or directly to
///    `Rva` in the actual address space.
///
/// For binaries that have not been optimized that way, the `PdbInternal*` values are effectively
/// equal to their regular counterparts and the conversion between the two are no-ops. Address
/// translation still has to assume different address spaces, which is why there is no direct
/// conversion without an `AddressMap`.
///
/// # Example
///
/// ```rust
/// # use pdb::{Rva, FallibleIterator};
/// #
/// # fn test() -> pdb::Result<()> {
/// # let source = std::fs::File::open("fixtures/self/foo.pdb")?;
/// let mut pdb = pdb::PDB::open(source)?;
///
/// // Compute the address map once and reuse it
/// let address_map = pdb.address_map()?;
///
/// # let symbol_table = pdb.global_symbols()?;
/// # let symbol = symbol_table.iter().next()?.unwrap();
/// # match symbol.parse() { Ok(pdb::SymbolData::Public(pubsym)) => {
/// // Obtain some section offset, eg from a symbol, and convert it
/// match pubsym.offset.to_rva(&address_map) {
///     Some(rva) => {
///         println!("symbol is at {}", rva);
/// #       assert_eq!(rva, Rva(26048));
///     }
///     None => {
///         println!("symbol refers to eliminated code");
/// #       panic!("symbol should exist");
///     }
/// }
/// # } _ => unreachable!() }
/// # Ok(())
/// # }
/// # test().unwrap()
/// ```
///
/// [Vulcan research project]: https://research.microsoft.com/pubs/69850/tr-2001-50.pdf
/// [Microsoft Binary Technologies Projects]: https://microsoft.com/windows/cse/bit_projects.mspx
/// [1997 reference material]: https://www.microsoft.com/msj/0597/hood0597.aspx
#[derive(Debug, Default)]
pub struct AddressMap<'s> {
    pub(crate) original_sections: Vec<ImageSectionHeader>,
    pub(crate) transformed_sections: Option<Vec<ImageSectionHeader>>,
    pub(crate) transformed_to_original: Option<OMAPTable<'s>>,
    pub(crate) original_to_transformed: Option<OMAPTable<'s>>,
}

impl<'s> AddressMap<'s> {
    /// Resolves actual ranges in the executable's address space.
    ///
    /// The given internal address range might be split up into multiple ranges in the executable.
    /// This iterator traverses all mapped ranges in the order of the PDB-internal mapping. All
    /// empty or eliminated ranges are skipped. Thus, the iterator might be empty even for non-empty
    /// ranges.
    pub fn rva_ranges(&self, range: Range<PdbInternalRva>) -> RvaRangeIter<'_> {
        RvaRangeIter(match self.original_to_transformed {
            Some(ref omap) => omap.lookup_range(range.start.0..range.end.0),
            None => RangeIter::identity(range.start.0..range.end.0),
        })
    }

    /// Resolves actual ranges in the executable's address space.
    ///
    /// The given address range might correspond to multiple ranges in the PDB-internal address
    /// space. This iterator traverses all mapped ranges in the order of the actual RVA mapping.
    /// This iterator might be empty even for non-empty ranges if no corresponding original range
    /// can be found.
    pub fn internal_rva_ranges(&self, range: Range<Rva>) -> PdbInternalRvaRangeIter<'_> {
        PdbInternalRvaRangeIter(match self.transformed_to_original {
            Some(ref omap) => omap.lookup_range(range.start.0..range.end.0),
            None => RangeIter::identity(range.start.0..range.end.0),
        })
    }
}

fn get_section_offset(sections: &[ImageSectionHeader], address: u32) -> Option<(u16, u32)> {
    // Section headers are sorted by virtual_address, so we only need to iterate until we exceed
    // the desired address. Since the number of section headers is relatively low, a sequential
    // search is the fastest option here.
    let (index, section) = sections
        .iter()
        .take_while(|s| s.virtual_address <= address)
        .enumerate()
        .find(|(_, s)| address < s.virtual_address + s.size_of_raw_data)?;

    Some((index as u16 + 1, address - section.virtual_address))
}

fn get_virtual_address(sections: &[ImageSectionHeader], section: u16, offset: u32) -> Option<u32> {
    (section as usize)
        .checked_sub(1)
        .and_then(|i| sections.get(i))
        .map(|section| section.virtual_address + offset)
}

impl Rva {
    /// Resolves a PDB-internal Relative Virtual Address.
    ///
    /// This address is not necessarily compatible with the executable's address space and should
    /// therefore not be used for debugging purposes.
    pub fn to_internal_rva(self, translator: &AddressMap<'_>) -> Option<PdbInternalRva> {
        match translator.transformed_to_original {
            Some(ref omap) => omap.lookup(self.0).map(PdbInternalRva),
            None => Some(PdbInternalRva(self.0)),
        }
    }

    /// Resolves the section offset in the PE headers.
    ///
    /// This is an offset into PE section headers of the executable. To retrieve section offsets
    /// used in the PDB, use [`to_internal_offset`](Self::to_internal_offset) instead.
    pub fn to_section_offset(self, translator: &AddressMap<'_>) -> Option<SectionOffset> {
        let (section, offset) = match translator.transformed_sections {
            Some(ref sections) => get_section_offset(sections, self.0)?,
            None => get_section_offset(&translator.original_sections, self.0)?,
        };

        Some(SectionOffset { section, offset })
    }

    /// Resolves the PDB internal section offset.
    ///
    /// This is the offset value used in the PDB file. To index into the actual PE section headers,
    /// use [`to_section_offset`](Self::to_section_offset) instead.
    pub fn to_internal_offset(
        self,
        translator: &AddressMap<'_>,
    ) -> Option<PdbInternalSectionOffset> {
        self.to_internal_rva(translator)?
            .to_internal_offset(translator)
    }
}

impl PdbInternalRva {
    /// Resolves an actual Relative Virtual Address in the executable's address space.
    pub fn to_rva(self, translator: &AddressMap<'_>) -> Option<Rva> {
        match translator.original_to_transformed {
            Some(ref omap) => omap.lookup(self.0).map(Rva),
            None => Some(Rva(self.0)),
        }
    }

    /// Resolves the section offset in the PE headers.
    ///
    /// This is an offset into PE section headers of the executable. To retrieve section offsets
    /// used in the PDB, use [`to_internal_offset`](Self::to_internal_offset) instead.
    pub fn to_section_offset(self, translator: &AddressMap<'_>) -> Option<SectionOffset> {
        self.to_rva(translator)?.to_section_offset(translator)
    }

    /// Resolves the PDB internal section offset.
    ///
    /// This is the offset value used in the PDB file. To index into the actual PE section headers,
    /// use [`to_section_offset`](Self::to_section_offset) instead.
    pub fn to_internal_offset(
        self,
        translator: &AddressMap<'_>,
    ) -> Option<PdbInternalSectionOffset> {
        let (section, offset) = get_section_offset(&translator.original_sections, self.0)?;
        Some(PdbInternalSectionOffset { section, offset })
    }
}

impl SectionOffset {
    /// Resolves an actual Relative Virtual Address in the executable's address space.
    pub fn to_rva(self, translator: &AddressMap<'_>) -> Option<Rva> {
        let address = match translator.transformed_sections {
            Some(ref sections) => get_virtual_address(sections, self.section, self.offset)?,
            None => get_virtual_address(&translator.original_sections, self.section, self.offset)?,
        };

        Some(Rva(address))
    }

    /// Resolves a PDB-internal Relative Virtual Address.
    ///
    /// This address is not necessarily compatible with the executable's address space and should
    /// therefore not be used for debugging purposes.
    pub fn to_internal_rva(self, translator: &AddressMap<'_>) -> Option<PdbInternalRva> {
        self.to_rva(translator)?.to_internal_rva(translator)
    }

    /// Resolves the PDB internal section offset.
    pub fn to_internal_offset(
        self,
        translator: &AddressMap<'_>,
    ) -> Option<PdbInternalSectionOffset> {
        if translator.transformed_sections.is_none() {
            // Fast path to avoid section table lookups
            let Self { section, offset } = self;
            return Some(PdbInternalSectionOffset { section, offset });
        }

        self.to_internal_rva(translator)?
            .to_internal_offset(translator)
    }
}

impl PdbInternalSectionOffset {
    /// Resolves an actual Relative Virtual Address in the executable's address space.
    pub fn to_rva(self, translator: &AddressMap<'_>) -> Option<Rva> {
        self.to_internal_rva(translator)?.to_rva(translator)
    }

    /// Resolves a PDB-internal Relative Virtual Address.
    ///
    /// This address is not necessarily compatible with the executable's address space and should
    /// therefore not be used for debugging purposes.
    pub fn to_internal_rva(self, translator: &AddressMap<'_>) -> Option<PdbInternalRva> {
        get_virtual_address(&translator.original_sections, self.section, self.offset)
            .map(PdbInternalRva)
    }

    /// Resolves the section offset in the PE headers.
    pub fn to_section_offset(self, translator: &AddressMap<'_>) -> Option<SectionOffset> {
        if translator.transformed_sections.is_none() {
            // Fast path to avoid section table lookups
            let Self { section, offset } = self;
            return Some(SectionOffset { section, offset });
        }

        self.to_rva(translator)?.to_section_offset(translator)
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    use std::mem;

    #[test]
    fn test_omap_record() {
        assert_eq!(mem::size_of::<OMAPRecord>(), 8);
        assert_eq!(mem::align_of::<OMAPRecord>(), 4);
    }

    #[test]
    fn test_get_virtual_address() {
        let sections = vec![ImageSectionHeader {
            virtual_address: 0x1000_0000,
            ..Default::default()
        }];

        assert_eq!(get_virtual_address(&sections, 1, 0x1234), Some(0x1000_1234));
        assert_eq!(get_virtual_address(&sections, 2, 0x1234), None);

        // https://github.com/willglynn/pdb/issues/87
        assert_eq!(get_virtual_address(&sections, 0, 0x1234), None);
    }
}