1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
//! # Pausable Clock
//!
//! This crate provides a clock that can be paused ... (duh?). The provided
//! struct `PausableClock` allows you to get the current time in a way that
//! respects the atomic state and history of the clock.  Put more simply, a
//! pausable clock's elapsed time increases at the same as real time but only
//! when the clock is resumed.
//!
//! ## Features
//! - Thread-Safe: (`Send`/`Sync`) All operations on the clock are atomic or use
//! std mutexes
//! - Resume Notification: the `wait_for_resume` method will block until the
//! clock is resumed (if the clock is paused)
//! - Resume Notification: the `wait_for_pause` method will block until the
//! clock is paused (if the clock is running)
//! - Guarantees: Just like `std::time::Instant::now()` guarantees that [time
//! always increases](https://doc.rust-lang.org/src/std/time.rs.html#238),
//! `PausableClock` guarantees that the time returned by `clock.now()` while the
//! clock is paused is >= any other instant returned before the clock was paused.
//! - Unpausable Tasks: We provide methods called `run_unpausable` and
//! `run_if_resumed` that allow tasks to be run that can prevent the clock from
//! being paused while they are still running.
//! - Unresumable Tasks: We provide a methods `run_unresumable` and
//! `run_if_paused` that allow tasks to be run that can prevent the clock from
//! being resumed while they are still running.
//! - There is a significant amount of weakly-ordered atomic operation going on
//! in this library to make sure the calls to now and unpausable task don't
//! require any locks. I can't claim that it is provably correct, but it has
//! been tested to high degree of certainty on x86_64 processors. Tests on
//! weakly ordered systems are forthcoming as are `loom`-based tests.
//!
//! ## Example
//!
//! ```rust
//! # use std::sync::Arc;
//! # use pausable_clock::PausableClock;
//! # use std::time::{Duration, Instant};
//! # use std::thread;
//!
//! let clock = Arc::new(PausableClock::default());
//!
//! // With the default parameters, there should be no difference
//! // between the real time and the clock's time
//! assert!(Instant::from(clock.now()).elapsed().as_millis() == 0);
//!
//! // Pause the clock right after creation
//! clock.pause();
//!
//! // Clone the arc of the clock to pass to a new thread
//! let clock_clone = clock.clone();
//!
//! let t = thread::spawn(move || {
//!     // In the new thread, just wait for resume
//!     clock_clone.wait_for_resume();
//! });
//!
//! // Sleep for a sec, then resume the clock
//! let sleep_start = Instant::now();
//! thread::sleep(Duration::from_secs(1));
//! let slept = sleep_start.elapsed().as_secs_f64();
//!
//! clock.resume();
//!
//! // Wait for the spawned thread to unblock
//! t.join().unwrap();
//!
//! // After being paused for a second, the clock is now a second behind
//! assert!((Instant::from(clock.now()).elapsed().as_secs_f64() - slept).abs() <= 0.001);
//! ```
//!
//! ## Caveats
//! - We use an `AtomicU64` to contain the entire state of the pausable clock,
//! so the granularity of the instant's produced by the clock is milliseconds.
//! This means the maximum time the timer can handle is on the order of hundreds
//! of thousands of years.
//! - Reads of the pause state for `PausableClock::is_paused` is done atomically
//! with `Ordering::Relaxed`. That allows the call to be slightly faster, but it
//! means you shouldn't think it as fencing a operations
#![warn(
    missing_docs,
    rust_2018_idioms,
    missing_debug_implementations,
    clippy::all
)]

mod pausability_state;
mod pausable_instant;
mod pause_state;
mod resumability_state;
mod unpausable_task_guard;
mod unresumable_task_guard;

use pausability_state::{
    PausabilityState, PausabilityStateTrait, PAUSING_REQUESTED_MASK,
};
pub use pausable_instant::PausableInstant;
use pause_state::{PauseState, PauseStateTrait};
use resumability_state::{
    ResumabilityState, ResumabilityStateTrait, RESUMING_REQUESTED_MASK,
};
use std::time::{Duration, Instant};
use unpausable_task_guard::UnpausableTaskGuard;
use unresumable_task_guard::UnresumableTaskGuard;

#[cfg(loom)]
use loom::sync::atomic::{compiler_fence, AtomicU32, AtomicU64, Ordering};

#[cfg(loom)]
use loom::sync::{Condvar, Mutex, MutexGuard};

#[cfg(not(loom))]
use std::sync::atomic::{compiler_fence, AtomicU32, AtomicU64, Ordering};

#[cfg(not(loom))]
use std::sync::{Condvar, Mutex, MutexGuard};

/// Enumeration of the possible pause states of the system.
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
enum CoursePauseState {
    Paused,
    Pausing,
    Resumed,
    Resuming,
}

/// Enumeration of the possible states of pausability. Normally this is
/// Unused. During a pause call it gets set to Pausing, and if there are
/// un-pausable tasks running when the pause call happens, they will set the
/// state to released.
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
enum CoursePausabilityState {
    Unused,
    Pausing,
    Released,
}

/// Enumeration of the possible states of resumability. Normally this is
/// Unused. During a resume call it gets set to Resuming, and if there are
/// un-resumable tasks running when the pause call happens, they will set the
/// state to released.
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
enum CourseResumabilityState {
    Unused,
    Resuming,
    Released,
}

/// Source of time information that can be paused and resumed. At its heart it
/// is a reference instant in real time, a record of elapsed time, and an atomic
/// state stored in a u64
#[derive(Debug)]
pub struct PausableClock {
    zero_instant: Instant,

    pause_state: AtomicU64,
    pause_state_lock: Mutex<CoursePauseState>,
    pause_state_condition: Condvar,

    pausability_state: AtomicU32,
    pausability_lock: Mutex<CoursePausabilityState>,
    pausability_condition: Condvar,

    resumability_state: AtomicU32,
    resumability_lock: Mutex<CourseResumabilityState>,
    resumability_condition: Condvar,
}

/// The default pausable clock is one that is (more or less) identical to real
/// time: Not paused and starting with zero starting offset
impl Default for PausableClock {
    fn default() -> Self {
        PausableClock::new(Default::default(), false)
    }
}

impl PausableClock {
    /// Create a new pausable clock with the given pause state and the given
    /// elapsed time
    pub fn new(elapsed_time: Duration, paused: bool) -> PausableClock {
        let now = Instant::now();
        let zero_instant = now - elapsed_time;

        let current_state = PauseState::new(
            true,
            false,
            true,
            false,
            elapsed_time.as_millis() as u64,
        );

        let result = PausableClock {
            zero_instant,
            pause_state: AtomicU64::new(current_state),

            pause_state_lock: Mutex::new(CoursePauseState::Paused),
            pause_state_condition: Condvar::default(),

            pausability_state: Default::default(),
            pausability_lock: Mutex::new(CoursePausabilityState::Unused),
            pausability_condition: Default::default(),

            resumability_state: Default::default(),
            resumability_lock: Mutex::new(CourseResumabilityState::Unused),
            resumability_condition: Default::default(),
        };

        if !paused {
            result.resume();
        }

        result
    }

    /// Get the current time according to the clock
    pub fn now(&self) -> PausableInstant {
        self.now_impl().0
    }

    /// Pause the pausable clock. This function will set the pause state to
    /// pausing, then to paused. This ensures that no times will be read in
    /// the time between when now is read and when the pause state is set that
    /// is greater than the paused time.
    ///
    /// Note. This method will block _synchronously_ if there are unpausable
    /// tasks being run.
    ///
    /// True will be returned for a successful pause (meaning the clock wasn't
    /// already paused), and false will be returned if the clock was paused when
    /// this method was called.
    pub fn pause(&self) -> bool {
        let mut paused_guard = self
            .pause_state_lock
            .lock()
            .expect("Failed to get pause lock");

        match *paused_guard {
            CoursePauseState::Paused => return false,
            CoursePauseState::Pausing => {
                panic!("Inconsistent pause state");
            }
            _ => {}
        }

        *paused_guard = CoursePauseState::Pausing;

        {
            let mut pausability_guard = self
                .pausability_lock
                .lock()
                .expect("Failed to get pause guard lock");
            if *pausability_guard != CoursePausabilityState::Unused {
                panic!("Inconsistent pausable state");
            }
            *pausability_guard = CoursePausabilityState::Pausing;
        }

        let starting_state = self.current_state(Ordering::SeqCst);
        let pausing = starting_state.with_pausing_flag();

        self.set_state(pausing);
        let pausability_state = self.set_pausing_flag_on_guard_state();

        if pausability_state.get_unpausable_task_count() > 0 {
            self.wait_for_unpausable_tasks_to_clear();
        }

        let (freeze_instant, real_time_at_freeze) = self.now_impl();

        // Freeze time at the given instant, but to prevent times ahead of pause
        // we don't consider the clock to be paused yet
        self.set_state(PauseState::new(
            false,
            true,
            true,
            false,
            freeze_instant.elapsed_millis,
        ));

        // Pretend to use the stored pausing instant as the input to resuming
        // fake_resume = now - zero - pausing
        let fake_resume_millis = self.millis_since_zero(real_time_at_freeze)
            - freeze_instant.elapsed_millis;

        let frozen_millis =
            self.zero_instant.elapsed().as_millis() as u64 - fake_resume_millis;

        let paused = PauseState::new(true, false, true, false, frozen_millis);

        *paused_guard = CoursePauseState::Paused;
        self.set_state(paused);
        self.unset_pausing_flag_on_guard_state();

        {
            let mut unpausable_task_guard_lock = self
                .pausability_lock
                .lock()
                .expect("Failed to get pause guard lock");

            *unpausable_task_guard_lock = CoursePausabilityState::Unused;
        }

        self.pause_state_condition.notify_all();
        true
    }

    /// Wait on the pausable guard condition to make sure all valid pause guards
    /// have exited before allowing the pause action to proceed
    fn wait_for_unpausable_tasks_to_clear(&self) {
        let unpausable_task_guard_lock = self
            .pausability_lock
            .lock()
            .expect("Failed to get pause guard lock");

        let _lock = self
            .pausability_condition
            .wait_while(unpausable_task_guard_lock, |s| {
                *s != CoursePausabilityState::Released
            })
            .expect("Expected valid return from pausability lock");
    }

    /// Wait on the resumable guard condition to make sure all valid resume
    /// guards have exited before allowing the resume action to proceed
    fn wait_for_unresumable_tasks_to_clear(&self) {
        let unresumable_task_guard_lock = self
            .resumability_lock
            .lock()
            .expect("Failed to get resume guard lock");

        let _lock = self
            .resumability_condition
            .wait_while(unresumable_task_guard_lock, |s| {
                *s != CourseResumabilityState::Released
            })
            .expect("Expected valid return from resumability lock");
    }

    /// Resume the pausable clock. This function will set the pause state to
    /// resuming, then to resumed.
    ///
    /// Note. This method will block _synchronously_ if there are unresumable
    /// tasks being run.
    ///
    /// True will be returned for a successful resume (meaning the clock wasn't
    /// already resumed), and false will be returned if the clock was resumed
    /// when this method was called.
    pub fn resume(&self) -> bool {
        let mut resumed_guard = self
            .pause_state_lock
            .lock()
            .expect("Failed to get pause lock");

        match *resumed_guard {
            CoursePauseState::Resumed => return false,
            CoursePauseState::Resuming => {
                panic!("Inconsistent pause state");
            }
            _ => {}
        }

        *resumed_guard = CoursePauseState::Resuming;

        {
            let mut resumability_guard = self
                .resumability_lock
                .lock()
                .expect("Failed to get resume guard lock");
            if *resumability_guard != CourseResumabilityState::Unused {
                panic!("Inconsistent pausable state");
            }
            *resumability_guard = CourseResumabilityState::Resuming;
        }

        let starting_state = self.current_state(Ordering::SeqCst);
        let resuming = starting_state.with_pausing_flag();

        self.set_state(resuming);
        let resumability_state = self.set_resuming_flag_on_guard_state();

        if resumability_state.get_unresumable_task_count() > 0 {
            self.wait_for_unresumable_tasks_to_clear();
        }

        // now - stored - zero = paused_millis
        // stored = now - paused_millis - zero
        let paused_millis = starting_state.get_millis();
        let stored_millis =
            self.zero_instant.elapsed().as_millis() as u64 - paused_millis;
        let resumed_state =
            PauseState::new(false, false, false, false, stored_millis);

        *resumed_guard = CoursePauseState::Resumed;

        self.set_state(resumed_state);

        self.unset_resuming_flag_on_guard_state();

        {
            let mut unresumable_task_guard_lock = self
                .resumability_lock
                .lock()
                .expect("Failed to get resume guard lock");

            *unresumable_task_guard_lock = CourseResumabilityState::Unused;
        }

        self.pause_state_condition.notify_all();
        true
    }

    /// Check to see if the clock is paused using relaxed atomic ordering
    pub fn is_paused(&self) -> bool {
        self.is_paused_ordered(Ordering::Relaxed)
    }

    /// Check to see if the clock is pausing using relaxed atomic ordering. Note
    /// that a clock that is paused will not be pausing
    pub fn is_pausing(&self) -> bool {
        self.is_pausing_ordered(Ordering::Relaxed)
    }

    /// Check to see if the clock is paused or pausing using relaxed atomic
    /// ordering
    pub fn is_paused_or_pausing(&self) -> bool {
        self.is_paused_or_pausing_ordered(Ordering::Relaxed)
    }

    /// Block the current thread until the clock resumes. If the clock is not
    /// paused when this method is called, the method will return without
    /// blocking
    pub fn wait_for_resume(&self) {
        let _guard = self.wait_for_resume_impl();
    }

    /// Block the current thread until the clock pauses. If the clock is paused
    /// when this method is called, the method will return without blocking
    pub fn wait_for_pause(&self) {
        let _guard = self.wait_for_pause_impl();
    }

    /// Wait for the clock to resume, or if the clock is already resumed, do
    /// nothing. The return for this function is none if no waiting was done,
    /// and a mutex guard on the pause state if waiting was done.
    fn wait_for_resume_impl(&self) -> Option<MutexGuard<'_, CoursePauseState>> {
        if !self.is_paused_or_pausing_ordered(Ordering::Acquire) {
            return None;
        }

        let guard = self
            .pause_state_lock
            .lock()
            .expect("Failed to get pause-state lock");

        let guard = self
            .pause_state_condition
            .wait_while(guard, |p| *p != CoursePauseState::Resumed)
            .expect("Failed to reacquire lock on pause state after resume");

        Some(guard)
    }

    /// Wait for the clock to pause, or if the clock is already paused, do
    /// nothing. The return for this function is none if no waiting was done,
    /// and a mutex guard on the pause state if waiting was done.
    fn wait_for_pause_impl(&self) -> Option<MutexGuard<'_, CoursePauseState>> {
        if !self.is_resumed_or_resuming_ordered(Ordering::Acquire) {
            return None;
        }

        let guard = self
            .pause_state_lock
            .lock()
            .expect("Failed to get pause-state lock");

        let guard = self
            .pause_state_condition
            .wait_while(guard, |p| *p != CoursePauseState::Paused)
            .expect("Failed to reacquire lock on pause state after pause");

        Some(guard)
    }

    /// This method provides a way to run in coordination with the pause
    /// functionality of the clock. A task run with this method will prevent
    /// the clock from being paused, and will not be run while the clock is
    /// paused
    pub fn run_unpausable<F, T>(&self, action: F) -> T
    where
        F: FnOnce() -> T,
    {
        self.run_paused_blocking_task(true, action).unwrap()
    }

    /// This method provides a way to run in coordination with the pause
    /// functionality of the clock. A task run with this method will prevent
    /// the clock from being paused, but will not be run if the clock is paused.
    /// The turn will contain the result of evaluation of the task if the task
    /// is run, and will be None if the task was not run (meaning the clock was
    /// paused)
    pub fn run_if_resumed<F, T>(&self, action: F) -> Option<T>
    where
        F: FnOnce() -> T,
    {
        self.run_paused_blocking_task(false, action)
    }

    /// Run the given task in a way that prevents the clock from pausing before
    /// the task is completed. This method makes waiting until resume optional
    fn run_paused_blocking_task<F, T>(
        &self,
        wait_if_paused: bool,
        action: F,
    ) -> Option<T>
    where
        F: FnOnce() -> T,
    {
        let guard_opt = match UnpausableTaskGuard::try_lock(self) {
            Ok(guard) => {
                // Another _Acquire_ read here that definitely happens after the
                // read of the pause guard state
                let pause_state = self.current_state(Ordering::Acquire);
                if pause_state.is_paused() {
                    // Paused means we couldn't get a guard, but no need to
                    // release the pausable lock
                    None
                } else if pause_state.is_pausing() {
                    // Pausing means we interrupted the pausing process. We
                    // can't keep the guard we have, and we need to ensure the
                    // pausing process is notified when this guard is dropped.
                    // we do that by setting the pausing flag on the guard state
                    // ourselves
                    self.set_pausing_flag_on_guard_state();
                    None
                } else {
                    Some(guard)
                }
            }
            _ => None,
        };

        if let Some(_guard) = guard_opt {
            Some(action())
        } else if !wait_if_paused {
            None
        } else {
            let mut guard_opt = self.wait_for_resume_impl();

            // If wait for pause was able to return a lock on the pause state,
            // we can use that to create an infallible pause guard
            if guard_opt.is_some() {
                let _unpausable_task_guard = {
                    let _active_guard = guard_opt.take();
                    UnpausableTaskGuard::try_lock(self)
                };
                Some(action())
            } else {
                // otherwise we have to start over
                self.run_paused_blocking_task(wait_if_paused, action)
            }
        }
    }

    /// This method provides a way to run in coordination with the resume
    /// functionality of the clock. A task run with this method will prevent
    /// the clock from being resumed, and will not be run while the clock is
    /// resumed
    pub fn run_unresumable<F, T>(&self, action: F) -> T
    where
        F: FnOnce() -> T,
    {
        self.run_resume_blocking_task(true, action).unwrap()
    }

    /// This method provides a way to run in coordination with the resume
    /// functionality of the clock. A task run with this method will prevent
    /// the clock from being resumed, but will not be run if the clock is not
    /// already paused. The turn will contain the result of evaluation of the
    /// task if the task is run, and will be None if the task was not run
    /// (meaning the clock was running)
    pub fn run_if_paused<F, T>(&self, action: F) -> Option<T>
    where
        F: FnOnce() -> T,
    {
        self.run_resume_blocking_task(false, action)
    }

    fn run_resume_blocking_task<F, T>(
        &self,
        wait_if_resumed: bool,
        action: F,
    ) -> Option<T>
    where
        F: FnOnce() -> T,
    {
        let guard_opt = match UnresumableTaskGuard::try_lock(self) {
            Ok(guard) => {
                // Another _Acquire_ read here that definitely happens after the
                // read of the pause guard state
                let pause_state = self.current_state(Ordering::Acquire);
                if pause_state.is_resumed() {
                    // Resumed means we couldn't get a guard, but no need to
                    // release the resumable lock
                    None
                } else if pause_state.is_resuming() {
                    // Resuming means we interrupted the resuming process. We
                    // can't keep the guard we have, and we need to ensure the
                    // pausing process is notified when this guard is dropped.
                    // we do that by setting the resuming flag on the guard
                    // state ourselves
                    self.set_resuming_flag_on_guard_state();
                    None
                } else {
                    Some(guard)
                }
            }
            _ => None,
        };

        if let Some(_guard) = guard_opt {
            Some(action())
        } else if !wait_if_resumed {
            None
        } else {
            let mut guard_opt = self.wait_for_pause_impl();

            // If wait for pause was able to return a lock on the pause state,
            // we can use that to create an infallible pause guard
            if guard_opt.is_some() {
                let _unresumable_task_guard = {
                    let _active_guard = guard_opt.take();
                    UnpausableTaskGuard::try_lock(self)
                };
                Some(action())
            } else {
                // otherwise we have to start over
                self.run_paused_blocking_task(wait_if_resumed, action)
            }
        }
    }

    fn current_state(&self, ordering: Ordering) -> PauseState {
        self.pause_state.load(ordering)
    }

    /// Get a tuple of the current pausable instant and the associated real
    /// instant that was used to create it.
    fn now_impl(&self) -> (PausableInstant, Instant) {
        let now = Instant::now();
        // Prevent compiler re-ordering here so time is not read after state
        compiler_fence(Ordering::SeqCst);
        let state = self.current_state(Ordering::Relaxed);

        if state.is_time_paused() {
            (
                PausableInstant::new(self.zero_instant, state.get_millis()),
                now,
            )
        } else {
            (
                PausableInstant::new(
                    self.zero_instant,
                    (now - self.zero_instant).as_millis() as u64
                        - state.get_millis(),
                ),
                now,
            )
        }
    }

    fn set_resuming_flag_on_guard_state(&self) -> ResumabilityState {
        self.resumability_state
            .fetch_or(RESUMING_REQUESTED_MASK, Ordering::AcqRel)
            | RESUMING_REQUESTED_MASK
    }

    fn unset_resuming_flag_on_guard_state(&self) -> ResumabilityState {
        self.resumability_state
            .fetch_and(!RESUMING_REQUESTED_MASK, Ordering::AcqRel)
            & (!RESUMING_REQUESTED_MASK)
    }

    fn set_pausing_flag_on_guard_state(&self) -> PausabilityState {
        self.pausability_state
            .fetch_or(PAUSING_REQUESTED_MASK, Ordering::AcqRel)
            | PAUSING_REQUESTED_MASK
    }

    fn unset_pausing_flag_on_guard_state(&self) -> PausabilityState {
        self.pausability_state
            .fetch_and(!PAUSING_REQUESTED_MASK, Ordering::AcqRel)
            & (!PAUSING_REQUESTED_MASK)
    }

    fn set_state(&self, new_state: PauseState) {
        self.pause_state.store(new_state, Ordering::SeqCst)
    }

    /// Check to see if the clock is paused using the given atomic ordering
    pub fn is_paused_ordered(&self, ordering: Ordering) -> bool {
        self.current_state(ordering).is_paused()
    }

    /// Check to see if the clock is pausing using the given atomic ordering.
    /// Note that a clock that is paused will not be pausing
    pub fn is_pausing_ordered(&self, ordering: Ordering) -> bool {
        self.current_state(ordering).is_pausing()
    }

    /// Check to see if the clock is paused or pausing using the given atomic
    /// ordering
    pub fn is_paused_or_pausing_ordered(&self, ordering: Ordering) -> bool {
        self.current_state(ordering).is_paused_or_pausing()
    }

    /// Check to see if the clock is resumed or resuming using the given atomic
    /// ordering
    pub fn is_resumed_or_resuming_ordered(&self, ordering: Ordering) -> bool {
        self.current_state(ordering).is_resumed_or_resuming()
    }

    fn millis_since_zero(&self, instant: Instant) -> u64 {
        (instant - self.zero_instant).as_millis() as u64
    }

    pub(crate) fn increment_unresumable_task_guards(
        &self,
    ) -> ResumabilityState {
        self.resumability_state.fetch_add(1, Ordering::Acquire) + 1
    }

    pub(crate) fn decrement_unresumable_task_guards(
        &self,
    ) -> ResumabilityState {
        let result =
            self.resumability_state.fetch_sub(1, Ordering::Acquire) - 1;

        if result.get_unresumable_task_count() == 0
            && result.is_resuming_requested()
        {
            {
                let mut resumability_guard = self
                    .resumability_lock
                    .lock()
                    .expect("Failed to get resume guard lock");
                if *resumability_guard == CourseResumabilityState::Resuming {
                    *resumability_guard = CourseResumabilityState::Released;
                }
            }
            self.resumability_condition.notify_all();
        }

        result
    }

    pub(crate) fn increment_unpausable_task_guards(&self) -> PausabilityState {
        self.pausability_state.fetch_add(1, Ordering::Acquire) + 1
    }

    pub(crate) fn decrement_unpausable_task_guards(&self) -> PausabilityState {
        let result = self.pausability_state.fetch_sub(1, Ordering::Acquire) - 1;

        if result.get_unpausable_task_count() == 0
            && result.is_pausing_requested()
        {
            {
                let mut pausability_guard = self
                    .pausability_lock
                    .lock()
                    .expect("Failed to get pause guard lock");
                if *pausability_guard == CoursePausabilityState::Pausing {
                    *pausability_guard = CoursePausabilityState::Released;
                }
            }
            self.pausability_condition.notify_all();
        }

        result
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[cfg(not(loom))]
    use std::sync::{
        atomic::{AtomicBool, AtomicU64},
        Arc, Condvar, Mutex,
    };

    #[cfg(not(loom))]
    use std::thread;
    use std::thread::sleep;

    #[cfg(loom)]
    use loom::sync::{
        atomic::{AtomicBool, AtomicU64},
        Arc, Condvar, Mutex,
    };

    #[cfg(loom)]
    use loom::thread;

    #[test]
    fn it_works() {
        let clock = Arc::new(PausableClock::default());

        assert!(clock.now().elapsed_millis() == 0);

        clock.pause();

        assert!(clock.is_paused());

        let clock_clone = clock.clone();

        let j = thread::spawn(move || {
            let bef_real = Instant::now();
            let bef = clock_clone.now();

            clock_clone.wait_for_resume();

            let aft = clock_clone.now();
            let aft_real = Instant::now();

            let elapsed_clock_millis = aft.elapsed_millis - bef.elapsed_millis;
            let elapsed_real_millis = (aft_real - bef_real).as_millis();

            assert!(elapsed_real_millis >= 1000);
            assert!(elapsed_clock_millis <= 1);
        });

        let now = Instant::now();
        thread::sleep(Duration::from_secs(1));
        let slept_millis = now.elapsed().as_secs_f64();

        clock.resume();

        assert!(!clock.is_paused());

        j.join().expect("Must be an assert fail in spawned thread");

        let elapsed = now.elapsed();

        assert!((elapsed.as_secs_f64() - slept_millis).abs() <= 0.001);
    }

    #[test]
    fn test_multiple_pauses() {
        let pause_duration = Duration::from_millis(10);
        let resume_duration = Duration::from_millis(20);
        let pause_count = 100;

        let clock = PausableClock::default();

        let mut resuming_time = Duration::from_millis(0);

        for _ in 0..pause_count {
            assert!(clock.pause());

            thread::sleep(pause_duration);

            assert!(clock.resume());

            let now = Instant::now();
            thread::sleep(resume_duration);
            resuming_time += now.elapsed();
        }

        // Adjust the the actual pause time by subtracting how
        let actual_elapsed_millis = clock.now().elapsed_millis as f64;
        let expected_elapsed_millis = resuming_time.as_millis() as f64;

        assert!(
            (actual_elapsed_millis - expected_elapsed_millis).abs()
                / expected_elapsed_millis
                < 0.005
        );
    }

    #[test]
    fn test_time_max_when_paused() {
        let clock = Arc::new(PausableClock::default());

        let threads = 1000;
        let last_times: Arc<Vec<AtomicU64>> = Arc::new(
            std::iter::repeat_with(|| AtomicU64::default())
                .take(threads)
                .collect(),
        );

        clock.pause();
        let keep_going = Arc::new(AtomicBool::new(true));

        let mut join_handles = Vec::with_capacity(threads);

        for i in 0..threads {
            let clock_clone = clock.clone();
            let last_times_clone = last_times.clone();
            let keep_going_clone = keep_going.clone();

            join_handles.push(thread::spawn(move || {
                clock_clone.wait_for_resume();
                while keep_going_clone.load(Ordering::Relaxed) {
                    last_times_clone.get(i).unwrap().store(
                        clock_clone.now().elapsed_millis,
                        Ordering::Relaxed,
                    );
                }
            }));
        }

        thread::sleep(Duration::from_millis(10));

        // unblock all the reader threads
        clock.resume();

        while last_times
            .iter()
            .filter(|v| v.load(Ordering::Relaxed) == 0)
            .next()
            .is_some()
        {}

        // pause while the clock is under heavy use
        clock.pause();

        let expected_max_elapsed = clock.now().elapsed_millis;

        keep_going.store(false, Ordering::Relaxed);

        // Wait for all worker threads to stop
        join_handles.into_iter().for_each(|j| {
            let _ = j.join();
        });

        for reader_latest in last_times.iter() {
            let actual = reader_latest.load(Ordering::Relaxed);

            println!("Asserting {} > {}", expected_max_elapsed, actual);

            assert!(actual > 0);
            assert!(actual <= expected_max_elapsed);
        }
    }

    #[test]
    fn test_unpausable_wont_run_while_paused() {
        let clock = Arc::new(PausableClock::default());

        clock.pause();

        let clock_clone = clock.clone();

        let counter = Arc::new(AtomicU64::default());
        let counter_clone = counter.clone();

        thread::spawn(move || {
            clock_clone.run_unpausable(|| {
                counter_clone.store(1, Ordering::SeqCst);
            });
        });

        thread::sleep(Duration::from_millis(50));

        assert_eq!(0, counter.load(Ordering::SeqCst));

        clock.resume();

        thread::sleep(Duration::from_millis(50));

        assert_eq!(1, counter.load(Ordering::SeqCst));
    }

    #[test]
    fn test_pause_blocks_until_unpausable_exits() {
        let clock = Arc::new(PausableClock::default());

        clock.resume();

        let lock = Arc::new(Mutex::new(true));
        let cond = Arc::new(Condvar::default());
        let clock_clone = clock.clone();
        let lock_clone = lock.clone();
        let cond_clone = cond.clone();

        let if_paused_counter = Arc::new(AtomicU32::default());

        let counter_clone = if_paused_counter.clone();

        thread::spawn(move || {
            clock_clone.run_if_resumed(move || {
                counter_clone.fetch_add(1, Ordering::SeqCst);
            });
        });

        let clock_clone = clock.clone();

        thread::spawn(move || {
            clock_clone.run_unpausable(|| {
                {
                    let mut lock = lock_clone.lock().unwrap();
                    *lock = false;
                }

                cond_clone.notify_all();
                thread::sleep(Duration::from_millis(1000));
            });
        });

        let before = Instant::now();

        {
            let lock = lock.lock().unwrap();
            let _lock = cond.wait_while(lock, |v| *v);
        }

        assert_eq!(1, if_paused_counter.load(Ordering::SeqCst));

        clock.pause();
        let time_to_pause = before.elapsed();

        println!("{:?}", time_to_pause);

        assert!(time_to_pause.as_secs_f64() >= 1.);

        clock.run_if_resumed(|| unreachable!());
    }

    #[test]
    fn test_resume_blocks_until_unresumable_exits() {
        let clock = Arc::new(PausableClock::default());

        let lock = Arc::new(Mutex::new(true));
        let cond = Arc::new(Condvar::default());
        let clock_clone = clock.clone();
        let lock_clone = lock.clone();
        let cond_clone = cond.clone();

        let if_resumed_counter = Arc::new(AtomicU32::default());

        let counter_clone = if_resumed_counter.clone();

        clock.pause();

        thread::spawn(move || {
            clock_clone.run_if_paused(move || {
                counter_clone.fetch_add(1, Ordering::SeqCst);
            });
        });

        let clock_clone = clock.clone();

        thread::spawn(move || {
            clock_clone.run_unresumable(|| {
                {
                    let mut lock = lock_clone.lock().unwrap();
                    *lock = false;
                }

                cond_clone.notify_all();
                thread::sleep(Duration::from_millis(1000));
            });
        });

        let before = Instant::now();

        {
            let lock = lock.lock().unwrap();
            let _lock = cond.wait_while(lock, |v| *v);
        }

        assert_eq!(1, if_resumed_counter.load(Ordering::SeqCst));

        clock.resume();
        let time_to_resume = before.elapsed();

        println!("{:?}", time_to_resume);

        assert!(time_to_resume.as_secs_f64() >= 1.);

        clock.run_if_paused(|| unreachable!());
    }

    #[test]
    fn test_start_paused() {
        let clock = PausableClock::new(Duration::from_secs(0), true);

        assert!(clock.is_paused());

        sleep(Duration::from_secs(1));

        assert!(clock.is_paused());
        assert_eq!(clock.now().elapsed_millis, 0);

        clock.resume();

        clock.run_if_paused(|| panic!("This shouldn't happen"));
        assert_eq!(Some(42), clock.run_if_resumed(|| 42));

        sleep(Duration::from_secs(1));

        assert!(!clock.is_paused());
        clock.pause();
        assert!(clock.is_paused());

        // Make sure the elapsed time shows about a second has passed
        assert!((clock.now().elapsed_millis as f64 - 1000.).abs() < 100.);

        clock.run_if_resumed(|| panic!("This shouldn't happen"));
        assert_eq!(Some(42), clock.run_if_paused(|| 42));
    }

    #[test]
    #[cfg(loom)]
    fn loom_test_pause_and_unpausable_interaction() {
        loom::model(|| {
            let clock = Arc::new(PausableClock::default());

            let clock_clone = clock.clone();

            thread::spawn(move || {
                clock_clone.pause();
            });

            let clock_clone = clock.clone();

            thread::spawn(move || {
                let clock_clone_2 = clock_clone.clone();

                clock_clone.run_unpausable(|| {
                    assert!(!clock_clone_2.is_paused_ordered(Ordering::Relaxed));
                });
            });
        });
    }
}