1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
// Copyright 2015-2017 Parity Technologies (UK) Ltd.
// This file is part of Parity.

// Parity is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// Parity is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with Parity.  If not, see <http://www.gnu.org/licenses/>.

use std::fmt;
use hashdb::*;
use nibbleslice::NibbleSlice;
use rlp::*;
use super::node::{Node, OwnedNode};
use super::lookup::Lookup;
use super::{Trie, TrieItem, TrieError, TrieIterator, Query};
use bigint::hash::H256;
use bytes::{ToPretty, Bytes};

/// A `Trie` implementation using a generic `HashDB` backing database.
///
/// Use it as a `Trie` trait object. You can use `db()` to get the backing database object.
/// Use `get` and `contains` to query values associated with keys in the trie.
///
/// # Example
/// ```
/// extern crate patricia_trie as trie;
/// extern crate hashdb;
/// extern crate memorydb;
/// extern crate ethcore_bigint as bigint;
///
/// use trie::*;
/// use hashdb::*;
/// use memorydb::*;
/// use bigint::hash::*;
///
/// fn main() {
///   let mut memdb = MemoryDB::new();
///   let mut root = H256::new();
///   TrieDBMut::new(&mut memdb, &mut root).insert(b"foo", b"bar").unwrap();
///   let t = TrieDB::new(&memdb, &root).unwrap();
///   assert!(t.contains(b"foo").unwrap());
///   assert_eq!(t.get(b"foo").unwrap().unwrap(), DBValue::from_slice(b"bar"));
/// }
/// ```
pub struct TrieDB<'db> {
	db: &'db HashDB,
	root: &'db H256,
	/// The number of hashes performed so far in operations on this trie.
	pub hash_count: usize,
}

#[cfg_attr(feature="dev", allow(wrong_self_convention))]
impl<'db> TrieDB<'db> {
	/// Create a new trie with the backing database `db` and `root`
	/// Returns an error if `root` does not exist
	pub fn new(db: &'db HashDB, root: &'db H256) -> super::Result<Self> {
		if !db.contains(root) {
			Err(Box::new(TrieError::InvalidStateRoot(*root)))
		} else {
			Ok(TrieDB {
				db: db,
				root: root,
				hash_count: 0
			})
		}
	}

	/// Get the backing database.
	pub fn db(&'db self) -> &'db HashDB {
		self.db
	}

	/// Get the data of the root node.
	fn root_data(&self) -> super::Result<DBValue> {
		self.db.get(self.root).ok_or_else(|| Box::new(TrieError::InvalidStateRoot(*self.root)))
	}

	/// Indentation helper for `format_all`.
	fn fmt_indent(&self, f: &mut fmt::Formatter, size: usize) -> fmt::Result {
		for _ in 0..size {
			write!(f, "  ")?;
		}
		Ok(())
	}

	/// Recursion helper for implementation of formatting trait.
	fn fmt_all(&self, node: Node, f: &mut fmt::Formatter, deepness: usize) -> fmt::Result {
		match node {
			Node::Leaf(slice, value) => writeln!(f, "'{:?}: {:?}.", slice, value.pretty())?,
			Node::Extension(ref slice, ref item) => {
				write!(f, "'{:?} ", slice)?;
				if let Ok(node) = self.get_raw_or_lookup(&*item) {
					self.fmt_all(Node::decoded(&node), f, deepness)?;
				}
			},
			Node::Branch(ref nodes, ref value) => {
				writeln!(f, "")?;
				if let Some(ref v) = *value {
					self.fmt_indent(f, deepness + 1)?;
					writeln!(f, "=: {:?}", v.pretty())?
				}
				for i in 0..16 {
					let node = self.get_raw_or_lookup(&*nodes[i]);
					match node.as_ref().map(|n| Node::decoded(&*n)) {
						Ok(Node::Empty) => {},
						Ok(n) => {
							self.fmt_indent(f, deepness + 1)?;
							write!(f, "'{:x} ", i)?;
							self.fmt_all(n, f, deepness + 1)?;
						}
						Err(e) => {
							write!(f, "ERROR: {}", e)?;
						}
					}
				}
			},
			// empty
			Node::Empty => {
				writeln!(f, "<empty>")?;
			}
		};
		Ok(())
	}

	/// Given some node-describing data `node`, return the actual node RLP.
	/// This could be a simple identity operation in the case that the node is sufficiently small, but
	/// may require a database lookup.
	fn get_raw_or_lookup(&'db self, node: &'db [u8]) -> super::Result<DBValue> {
		// check if its keccak + len
		let r = Rlp::new(node);
		match r.is_data() && r.size() == 32 {
			true => {
				let key = r.as_val::<H256>();
				self.db.get(&key).ok_or_else(|| Box::new(TrieError::IncompleteDatabase(key)))
			}
			false => Ok(DBValue::from_slice(node))
		}
	}
}

impl<'db> Trie for TrieDB<'db> {
	fn iter<'a>(&'a self) -> super::Result<Box<TrieIterator<Item = TrieItem> + 'a>> {
		TrieDBIterator::new(self).map(|iter| Box::new(iter) as Box<_>)
	}

	fn root(&self) -> &H256 { self.root }

	fn get_with<'a, 'key, Q: Query>(&'a self, key: &'key [u8], query: Q) -> super::Result<Option<Q::Item>>
		where 'a: 'key
	{
		Lookup {
			db: self.db,
			query: query,
			hash: self.root.clone(),
		}.look_up(NibbleSlice::new(key))
	}
}

impl<'db> fmt::Debug for TrieDB<'db> {
	fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
		writeln!(f, "c={:?} [", self.hash_count)?;
		let root_rlp = self.db.get(self.root).expect("Trie root not found!");
		self.fmt_all(Node::decoded(&root_rlp), f, 0)?;
		writeln!(f, "]")
	}
}

#[derive(Clone, Eq, PartialEq)]
enum Status {
	Entering,
	At,
	AtChild(usize),
	Exiting,
}

#[derive(Clone, Eq, PartialEq)]
struct Crumb {
	node: OwnedNode,
	status: Status,
}

impl Crumb {
	/// Move on to next status in the node's sequence.
	fn increment(&mut self) {
		self.status = match (&self.status, &self.node) {
			(_, &OwnedNode::Empty) => Status::Exiting,
			(&Status::Entering, _) => Status::At,
			(&Status::At, &OwnedNode::Branch(_, _)) => Status::AtChild(0),
			(&Status::AtChild(x), &OwnedNode::Branch(_, _)) if x < 15 => Status::AtChild(x + 1),
			_ => Status::Exiting,
		}
	}
}

/// Iterator for going through all values in the trie.
#[derive(Clone)]
pub struct TrieDBIterator<'a> {
	db: &'a TrieDB<'a>,
	trail: Vec<Crumb>,
	key_nibbles: Bytes,
}

impl<'a> TrieDBIterator<'a> {
	/// Create a new iterator.
	pub fn new(db: &'a TrieDB) -> super::Result<TrieDBIterator<'a>> {
		let mut r = TrieDBIterator {
			db: db,
			trail: vec![],
			key_nibbles: Vec::new(),
		};

		db.root_data().and_then(|root| r.descend(&root))?;
		Ok(r)
	}

	fn seek<'key>(&mut self, mut node_data: DBValue, mut key: NibbleSlice<'key>) -> super::Result<()> {
		loop {
			let (data, mid) = {
				let node = Node::decoded(&node_data);
				match node {
					Node::Leaf(slice, _) => {
						if slice == key {
							self.trail.push(Crumb {
								status: Status::At,
								node: node.clone().into(),
							});
						} else {
							self.trail.push(Crumb {
								status: Status::Exiting,
								node: node.clone().into(),
							});
						}

						self.key_nibbles.extend(slice.iter());
						return Ok(())
					},
					Node::Extension(ref slice, ref item) => {
						if key.starts_with(slice) {
							self.trail.push(Crumb {
								status: Status::At,
								node: node.clone().into(),
							});
							self.key_nibbles.extend(slice.iter());
							let data = self.db.get_raw_or_lookup(&*item)?;
							(data, slice.len())
						} else {
							self.descend(&node_data)?;
							return Ok(())
						}
					},
					Node::Branch(ref nodes, _) => match key.is_empty() {
						true => {
							self.trail.push(Crumb {
								status: Status::At,
								node: node.clone().into(),
							});
							return Ok(())
						},
						false => {
							let i = key.at(0);
							self.trail.push(Crumb {
								status: Status::AtChild(i as usize),
								node: node.clone().into(),
							});
							self.key_nibbles.push(i);
							let child = self.db.get_raw_or_lookup(&*nodes[i as usize])?;
							(child, 1)
						}
					},
					_ => return Ok(()),
				}
			};

			node_data = data;
			key = key.mid(mid);
		}
	}

	/// Descend into a payload.
	fn descend(&mut self, d: &[u8]) -> super::Result<()> {
		let node = Node::decoded(&self.db.get_raw_or_lookup(d)?).into();
		Ok(self.descend_into_node(node))
	}

	/// Descend into a payload.
	fn descend_into_node(&mut self, node: OwnedNode) {
		self.trail.push(Crumb {
			status: Status::Entering,
			node: node,
		});
		match &self.trail.last().expect("just pushed item; qed").node {
			&OwnedNode::Leaf(ref n, _) | &OwnedNode::Extension(ref n, _) => {
				self.key_nibbles.extend((0..n.len()).map(|i| n.at(i)));
			},
			_ => {}
		}
	}

	/// The present key.
	fn key(&self) -> Bytes {
		// collapse the key_nibbles down to bytes.
		let nibbles = &self.key_nibbles;
		let mut i = 1;
		let mut result = Bytes::with_capacity(nibbles.len() / 2);
		let len = nibbles.len();
		while i < len {
			result.push(nibbles[i - 1] * 16 + nibbles[i]);
			i += 2;
		}
		result
	}
}

impl<'a> TrieIterator for TrieDBIterator<'a> {
	/// Position the iterator on the first element with key >= `key`
	fn seek(&mut self, key: &[u8]) -> super::Result<()> {
		self.trail.clear();
		self.key_nibbles.clear();
		let root_rlp = self.db.root_data()?;
		self.seek(root_rlp, NibbleSlice::new(key))
	}
}

impl<'a> Iterator for TrieDBIterator<'a> {
	type Item = TrieItem<'a>;

	fn next(&mut self) -> Option<Self::Item> {
		enum IterStep {
			Continue,
			PopTrail,
			Descend(super::Result<DBValue>),
		}

		loop {
			let iter_step = {
				match self.trail.last_mut() {
					Some(b) => { b.increment(); },
					None => return None,
				}

				let b = self.trail.last().expect("trail.last_mut().is_some(); qed");

				match (b.status.clone(), &b.node) {
					(Status::Exiting, n) => {
						match *n {
							OwnedNode::Leaf(ref n, _) | OwnedNode::Extension(ref n, _) => {
								let l = self.key_nibbles.len();
								self.key_nibbles.truncate(l - n.len());
							},
							OwnedNode::Branch(_, _) => { self.key_nibbles.pop(); },
							_ => {}
						}
						IterStep::PopTrail
					},
					(Status::At, &OwnedNode::Leaf(_, ref v)) | (Status::At, &OwnedNode::Branch(_, Some(ref v))) => {
						return Some(Ok((self.key(), v.clone())));
					},
					(Status::At, &OwnedNode::Extension(_, ref d)) => IterStep::Descend(self.db.get_raw_or_lookup(&*d)),
					(Status::At, &OwnedNode::Branch(_, _)) => IterStep::Continue,
					(Status::AtChild(i), &OwnedNode::Branch(ref children, _)) if children[i].len() > 0 => {
						match i {
							0 => self.key_nibbles.push(0),
							i => *self.key_nibbles.last_mut()
								.expect("pushed as 0; moves sequentially; removed afterwards; qed") = i as u8,
						}
						IterStep::Descend(self.db.get_raw_or_lookup(&*children[i]))
					},
					(Status::AtChild(i), &OwnedNode::Branch(_, _)) => {
						if i == 0 {
							self.key_nibbles.push(0);
						}
						IterStep::Continue
					},
					_ => panic!() // Should never see Entering or AtChild without a Branch here.
				}
			};

			match iter_step {
				IterStep::PopTrail => {
					self.trail.pop();
				},
				IterStep::Descend(Ok(d)) => {
					self.descend_into_node(Node::decoded(&d).into())
				},
				IterStep::Descend(Err(e)) => {
					return Some(Err(e))
				}
				IterStep::Continue => {},
			}
		}
	}
}

#[test]
fn iterator() {
	use memorydb::*;
	use super::TrieMut;
	use super::triedbmut::*;

	let d = vec![ DBValue::from_slice(b"A"), DBValue::from_slice(b"AA"), DBValue::from_slice(b"AB"), DBValue::from_slice(b"B") ];

	let mut memdb = MemoryDB::new();
	let mut root = H256::new();
	{
		let mut t = TrieDBMut::new(&mut memdb, &mut root);
		for x in &d {
			t.insert(x, x).unwrap();
		}
	}

	let t = TrieDB::new(&memdb, &root).unwrap();
	assert_eq!(d.iter().map(|i| i.clone().into_vec()).collect::<Vec<_>>(), t.iter().unwrap().map(|x| x.unwrap().0).collect::<Vec<_>>());
	assert_eq!(d, t.iter().unwrap().map(|x| x.unwrap().1).collect::<Vec<_>>());
}

#[test]
fn iterator_seek() {
	use memorydb::*;
	use super::TrieMut;
	use super::triedbmut::*;

	let d = vec![ DBValue::from_slice(b"A"), DBValue::from_slice(b"AA"), DBValue::from_slice(b"AB"), DBValue::from_slice(b"B") ];

	let mut memdb = MemoryDB::new();
	let mut root = H256::new();
	{
		let mut t = TrieDBMut::new(&mut memdb, &mut root);
		for x in &d {
			t.insert(x, x).unwrap();
		}
	}

	let t = TrieDB::new(&memdb, &root).unwrap();
	let mut iter = t.iter().unwrap();
	assert_eq!(iter.next(), Some(Ok((b"A".to_vec(), DBValue::from_slice(b"A")))));
	iter.seek(b"!").unwrap();
	assert_eq!(d, iter.map(|x| x.unwrap().1).collect::<Vec<_>>());
	let mut iter = t.iter().unwrap();
	iter.seek(b"A").unwrap();
	assert_eq!(&d[1..], &iter.map(|x| x.unwrap().1).collect::<Vec<_>>()[..]);
	let mut iter = t.iter().unwrap();
	iter.seek(b"AA").unwrap();
	assert_eq!(&d[2..], &iter.map(|x| x.unwrap().1).collect::<Vec<_>>()[..]);
	let mut iter = t.iter().unwrap();
	iter.seek(b"A!").unwrap();
	assert_eq!(&d[1..], &iter.map(|x| x.unwrap().1).collect::<Vec<_>>()[..]);
	let mut iter = t.iter().unwrap();
	iter.seek(b"AB").unwrap();
	assert_eq!(&d[3..], &iter.map(|x| x.unwrap().1).collect::<Vec<_>>()[..]);
	let mut iter = t.iter().unwrap();
	iter.seek(b"AB!").unwrap();
	assert_eq!(&d[3..], &iter.map(|x| x.unwrap().1).collect::<Vec<_>>()[..]);
	let mut iter = t.iter().unwrap();
	iter.seek(b"B").unwrap();
	assert_eq!(&d[4..], &iter.map(|x| x.unwrap().1).collect::<Vec<_>>()[..]);
	let mut iter = t.iter().unwrap();
	iter.seek(b"C").unwrap();
	assert_eq!(&d[4..], &iter.map(|x| x.unwrap().1).collect::<Vec<_>>()[..]);
}

#[test]
fn get_len() {
	use memorydb::*;
	use super::TrieMut;
	use super::triedbmut::*;

	let mut memdb = MemoryDB::new();
	let mut root = H256::new();
	{
		let mut t = TrieDBMut::new(&mut memdb, &mut root);
		t.insert(b"A", b"ABC").unwrap();
		t.insert(b"B", b"ABCBA").unwrap();
	}

	let t = TrieDB::new(&memdb, &root).unwrap();
	assert_eq!(t.get_with(b"A", |x: &[u8]| x.len()), Ok(Some(3)));
	assert_eq!(t.get_with(b"B", |x: &[u8]| x.len()), Ok(Some(5)));
	assert_eq!(t.get_with(b"C", |x: &[u8]| x.len()), Ok(None));
}