1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
//! Rectangular grid in which vertices can be added or removed, with or
//! without diagonal links.

use super::matrix::Matrix;
use crate::directed::bfs::bfs_reach;
use crate::directed::dfs::dfs_reach;
use indexmap::IndexSet;
use itertools::iproduct;
use std::collections::BTreeSet;
use std::fmt;
use std::iter::{FromIterator, FusedIterator};

#[derive(Clone)]
/// Representation of a rectangular grid in which vertices can be added
/// or removed. Edges are automatically created between adjacent vertices.
/// By default, only vertical and horizontal edges are created, unless
/// diagonal mode is enabled.
///
/// Internally, a Grid is represented either as a collection of vertices
/// or as a collection of absent vertices, depending on the density of
/// the grid. The switch between both representations is done automatically
/// when vertices are added or removed, or when the grid is resized.
///
/// `Grid` implements `Debug` and represents the content using `#` and `.`
/// characters. Alternate block characters `▓` and `░` can be selected by
/// using the alternate debug format (`{:#?}`):
///
/// ```
/// use pathfinding::prelude::Grid;
///
/// let mut g = Grid::new(3, 4);
/// g.add_borders();
///
/// assert_eq!(&format!("{:?}", g), "\
/// ####
/// #.#
/// #.#
/// ####");
///
/// assert_eq!(&format!("{:#?}", g), "\
/// ▓▓▓
/// ▓░▓
/// ▓░▓
/// ▓▓▓");
/// ```
pub struct Grid {
    /// The grid width.
    pub width: usize,
    /// The grid height.
    pub height: usize,
    diagonal_mode: bool,
    // `dense` is true if the grid is full by default and `exclusions`
    // contains absent vertices. It is false if the grid is empty by default
    // and `exclusions` contains the vertices.
    dense: bool,
    exclusions: IndexSet<(usize, usize)>,
}

impl Grid {
    /// Create a new empty grid object of the given dimensions, with
    /// diagonal mode disabled.
    #[must_use]
    pub fn new(width: usize, height: usize) -> Self {
        Self {
            width,
            height,
            diagonal_mode: false,
            dense: false,
            exclusions: IndexSet::new(),
        }
    }

    /// Check if a (possibly removed) vertex belongs to the grid or if it
    /// is located outside the grid.
    #[inline]
    #[must_use]
    pub fn is_inside(&self, vertex: (usize, usize)) -> bool {
        vertex.0 < self.width && vertex.1 < self.height
    }

    /// Enable diagonal mode. Diagonal edges will be created between
    /// adjacent vertices.
    pub fn enable_diagonal_mode(&mut self) {
        self.diagonal_mode = true;
    }

    /// Disable diagonal mode. Only horizontal and vertical edges will
    /// be created between adjacent vertices.
    pub fn disable_diagonal_mode(&mut self) {
        self.diagonal_mode = false;
    }

    /// Resize the grid to the given dimensions. Return `true` if this
    /// caused any existing vertex to be discarded.
    pub fn resize(&mut self, width: usize, height: usize) -> bool {
        let mut truncated = false;
        if width < self.width {
            truncated |= iproduct!(width..self.width, 0..self.height).any(|c| self.has_vertex(c));
        }
        if height < self.height {
            truncated |= iproduct!(0..self.width, height..self.height).any(|c| self.has_vertex(c));
        }
        self.exclusions.retain(|&(x, y)| x < width && y < height);
        if self.dense {
            for vertex in iproduct!(self.width..width, 0..height) {
                self.exclusions.insert(vertex);
            }
            for vertex in iproduct!(0..self.width.min(width), self.height..height) {
                self.exclusions.insert(vertex);
            }
        }
        self.width = width;
        self.height = height;
        self.rebalance();
        truncated
    }

    /// Return the number of positions in this grid.
    #[must_use]
    pub fn size(&self) -> usize {
        self.width * self.height
    }

    /// Return the number of vertices.
    #[must_use]
    pub fn vertices_len(&self) -> usize {
        if self.dense {
            self.size() - self.exclusions.len()
        } else {
            self.exclusions.len()
        }
    }

    /// Add a new vertex. Return `true` if the vertex did not previously
    /// exist and has been added.
    pub fn add_vertex(&mut self, vertex: (usize, usize)) -> bool {
        if !self.is_inside(vertex) {
            return false;
        }
        let r = if self.dense {
            self.exclusions.remove(&vertex)
        } else {
            self.exclusions.insert(vertex)
        };
        self.rebalance();
        r
    }

    /// Remove a vertex. Return `true` if the vertex did previously exist
    /// and has been removed.
    pub fn remove_vertex(&mut self, vertex: (usize, usize)) -> bool {
        if !self.is_inside(vertex) {
            return false;
        }
        let r = if self.dense {
            self.exclusions.insert(vertex)
        } else {
            self.exclusions.remove(&vertex)
        };
        self.rebalance();
        r
    }

    /// Return an iterator over the border vertices. The grid must not have
    /// a zero width or height.
    fn borders(&self) -> impl Iterator<Item = (usize, usize)> {
        let width = self.width;
        let height = self.height;
        (0..width)
            .flat_map(move |x| vec![(x, 0), (x, height - 1)].into_iter())
            .chain((1..height - 1).flat_map(move |y| vec![(0, y), (width - 1, y)].into_iter()))
    }

    /// Add the borders of the grid. Return the number of added vertices.
    pub fn add_borders(&mut self) -> usize {
        if self.width == 0 || self.height == 0 {
            return 0;
        }
        let count = if self.dense {
            self.borders().filter(|v| self.exclusions.remove(v)).count()
        } else {
            self.borders()
                .filter(|v| self.exclusions.insert(*v))
                .count()
        };
        self.rebalance();
        count
    }

    /// Remove the borders of the grid. Return the number of removed vertices.
    pub fn remove_borders(&mut self) -> usize {
        if self.width == 0 || self.height == 0 {
            return 0;
        }
        let count = if self.dense {
            self.borders()
                .filter(|v| self.exclusions.insert(*v))
                .count()
        } else {
            self.borders().filter(|v| self.exclusions.remove(v)).count()
        };
        self.rebalance();
        count
    }

    fn rebalance(&mut self) {
        if self.exclusions.len() > self.width * self.height / 2 {
            self.exclusions = iproduct!(0..self.width, 0..self.height)
                .filter(|v| !self.exclusions.contains(v))
                .collect();
            self.dense = !self.dense;
        }
    }

    /// Remove all vertices from the grid. Return `true` if the grid
    /// previously contained at least one vertex.
    pub fn clear(&mut self) -> bool {
        let r = !self.is_empty();
        self.dense = false;
        self.exclusions.clear();
        r
    }

    /// Fill the grid with all possible vertices. Return `true` if
    /// this caused the addition of at least one vertex.
    pub fn fill(&mut self) -> bool {
        let r = !self.is_full();
        self.clear();
        self.invert();
        r
    }

    /// Return `true` if the grid contains no vertices.
    #[must_use]
    pub fn is_empty(&self) -> bool {
        if self.dense {
            self.exclusions.len() == self.size()
        } else {
            self.exclusions.is_empty()
        }
    }

    /// Return `true` if no additional vertices can be set
    /// (because they are all already set).
    #[must_use]
    pub fn is_full(&self) -> bool {
        if self.dense {
            self.exclusions.is_empty()
        } else {
            self.exclusions.len() == self.size()
        }
    }

    /// Remove every existing vertex, and add all absent vertices.
    /// If you see the grid as a black and white array, imagine that
    /// the color are exchanged.
    pub fn invert(&mut self) {
        self.dense = !self.dense;
    }

    /// Check if a vertex is present.
    #[must_use]
    pub fn has_vertex(&self, vertex: (usize, usize)) -> bool {
        self.is_inside(vertex) && (self.exclusions.contains(&vertex) ^ self.dense)
    }

    /// Check if an edge is present.
    #[must_use]
    pub fn has_edge(&self, v1: (usize, usize), v2: (usize, usize)) -> bool {
        if !self.has_vertex(v1) || !self.has_vertex(v2) {
            return false;
        }
        let x = v1.0.abs_diff(v2.0);
        let y = v1.1.abs_diff(v2.1);
        x + y == 1 || (x == 1 && y == 1 && self.diagonal_mode)
    }

    /// Iterate over edges.
    #[must_use]
    pub fn edges(&self) -> EdgesIterator {
        EdgesIterator {
            grid: self,
            x: 0,
            y: 0,
            i: 0,
        }
    }

    /// Return the list of neighbours of a given vertex. If `vertex` is absent
    /// from the grid, an empty list is returned. Only existing vertices will
    /// be returned.
    #[must_use]
    pub fn neighbours(&self, vertex: (usize, usize)) -> Vec<(usize, usize)> {
        if !self.has_vertex(vertex) {
            return vec![];
        }
        let (x, y) = vertex;
        let mut candidates = Vec::with_capacity(8);
        if x > 0 {
            candidates.push((x - 1, y));
            if self.diagonal_mode {
                if y > 0 {
                    candidates.push((x - 1, y - 1));
                }
                if y + 1 < self.height {
                    candidates.push((x - 1, y + 1));
                }
            }
        }
        if x + 1 < self.width {
            candidates.push((x + 1, y));
            if self.diagonal_mode {
                if y > 0 {
                    candidates.push((x + 1, y - 1));
                }
                if y + 1 < self.height {
                    candidates.push((x + 1, y + 1));
                }
            }
        }
        if y > 0 {
            candidates.push((x, y - 1));
        }
        if y + 1 < self.height {
            candidates.push((x, y + 1));
        }
        candidates.retain(|&v| self.has_vertex(v));
        candidates
    }

    /// Return a set of the indices reachable from a candidate starting point
    /// and for which the given predicate is valid using BFS. This can be used for example
    /// to implement a flood-filling algorithm. Since the indices are collected
    /// into a collection, they can later be used without keeping a reference on the
    /// matrix itself, e.g., to modify the grid.
    ///
    /// The search is done using a breadth first search (BFS) algorithm.
    ///
    /// # See also
    ///
    /// The [`dfs_reachable()`](`Self::dfs_reachable`) performs a DFS search instead.
    pub fn bfs_reachable<P>(
        &self,
        start: (usize, usize),
        mut predicate: P,
    ) -> BTreeSet<(usize, usize)>
    where
        P: FnMut((usize, usize)) -> bool,
    {
        bfs_reach(start, |&n| {
            self.neighbours(n)
                .into_iter()
                .filter(|&n| predicate(n))
                .collect::<Vec<_>>()
        })
        .collect()
    }

    /// Return a set of the indices reachable from a candidate starting point
    /// and for which the given predicate is valid using BFS. This can be used for example
    /// to implement a flood-filling algorithm. Since the indices are collected
    /// into a collection, they can later be used without keeping a reference on the
    /// matrix itself, e.g., to modify the grid.
    ///
    /// The search is done using a depth first search (DFS) algorithm.
    ///
    /// # See also
    ///
    /// The [`bfs_reachable()`](`Self::bfs_reachable`) performs a BFS search instead.
    pub fn dfs_reachable<P>(
        &self,
        start: (usize, usize),
        mut predicate: P,
    ) -> BTreeSet<(usize, usize)>
    where
        P: FnMut((usize, usize)) -> bool,
    {
        dfs_reach(start, |&n| {
            self.neighbours(n)
                .into_iter()
                .filter(|&n| predicate(n))
                .collect::<Vec<_>>()
        })
        .collect()
    }

    /// Iterate over vertices.
    #[must_use]
    pub fn iter(&self) -> GridIterator {
        self.into_iter()
    }

    /// Distance between two potential vertices. If diagonal mode is
    /// enabled, this is the maximum of both coordinates difference.
    /// If diagonal mode is disabled, this is the Manhattan distance.
    #[must_use]
    pub fn distance(&self, a: (usize, usize), b: (usize, usize)) -> usize {
        let (dx, dy) = (a.0.abs_diff(b.0), a.1.abs_diff(b.1));
        if self.diagonal_mode {
            dx.max(dy)
        } else {
            dx + dy
        }
    }
}

impl FromIterator<(usize, usize)> for Grid {
    fn from_iter<T>(iter: T) -> Self
    where
        T: IntoIterator<Item = (usize, usize)>,
    {
        let vertices = iter.into_iter().collect();
        let mut width = 0;
        let mut height = 0;
        for &(x, y) in &vertices {
            if x + 1 > width {
                width = x + 1;
            }
            if y + 1 > height {
                height = y + 1;
            }
        }
        let mut grid = Self {
            width,
            height,
            diagonal_mode: false,
            dense: false,
            exclusions: vertices,
        };
        grid.rebalance();
        grid
    }
}

/// Iterator returned by calling `.into_iter()` on a grid.
pub struct GridIntoIterator {
    grid: Grid,
    x: usize,
    y: usize,
}

impl Iterator for GridIntoIterator {
    type Item = (usize, usize);

    fn next(&mut self) -> Option<Self::Item> {
        if self.grid.dense {
            loop {
                if self.y == self.grid.height {
                    return None;
                }
                let r = (self.grid.has_vertex((self.x, self.y))).then_some((self.x, self.y));
                self.x += 1;
                if self.x == self.grid.width {
                    self.x = 0;
                    self.y += 1;
                }
                if r.is_some() {
                    return r;
                }
            }
        } else {
            self.grid.exclusions.pop()
        }
    }
}

impl FusedIterator for GridIntoIterator {}

impl IntoIterator for Grid {
    type Item = (usize, usize);
    type IntoIter = GridIntoIterator;

    #[must_use]
    fn into_iter(self) -> Self::IntoIter {
        GridIntoIterator {
            grid: self,
            x: 0,
            y: 0,
        }
    }
}

/// Iterator returned by calling `.iter()` on a grid.
pub struct GridIterator<'a> {
    grid: &'a Grid,
    x: usize,
    y: usize,
}

impl Iterator for GridIterator<'_> {
    type Item = (usize, usize);

    fn next(&mut self) -> Option<Self::Item> {
        if self.grid.dense {
            loop {
                if self.y == self.grid.height {
                    return None;
                }
                let r = (self.grid.has_vertex((self.x, self.y))).then_some((self.x, self.y));
                self.x += 1;
                if self.x == self.grid.width {
                    self.x = 0;
                    self.y += 1;
                }
                if r.is_some() {
                    return r;
                }
            }
        } else {
            self.grid
                .exclusions
                .get_index(self.x)
                .map(|v| {
                    self.x += 1;
                    v
                })
                .copied()
        }
    }
}

impl FusedIterator for GridIterator<'_> {}

impl<'a> IntoIterator for &'a Grid {
    type Item = (usize, usize);
    type IntoIter = GridIterator<'a>;

    #[must_use]
    fn into_iter(self) -> Self::IntoIter {
        GridIterator {
            grid: self,
            x: 0,
            y: 0,
        }
    }
}

/// Iterator returned by calling `.edges()` on a grid.
pub struct EdgesIterator<'a> {
    grid: &'a Grid,
    x: usize,
    y: usize,
    i: usize,
}

impl Iterator for EdgesIterator<'_> {
    type Item = ((usize, usize), (usize, usize));

    fn next(&mut self) -> Option<Self::Item> {
        loop {
            if self.y == self.grid.height {
                return None;
            }
            let x = self.x;
            let y = self.y;
            let other = match self.i {
                0 => (x + 1, y),
                1 => (x, y + 1),
                2 => (x + 1, y + 1),
                _ => (x - 1, y + 1),
            };
            self.i += 1;
            if (x == 0 && self.i == 3) || self.i == 4 {
                self.i = 0;
                self.x += 1;
                if self.x == self.grid.width {
                    self.x = 0;
                    self.y += 1;
                }
            }
            if self.grid.has_edge((x, y), other) {
                return Some(((x, y), other));
            }
        }
    }
}

impl FusedIterator for EdgesIterator<'_> {}

impl fmt::Debug for Grid {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        let (present, absent) = [('#', '.'), ('▓', '░')][f.alternate() as usize];
        for y in 0..self.height {
            for x in 0..self.width {
                write!(f, "{}", [absent, present][self.has_vertex((x, y)) as usize])?;
            }
            if y != self.height - 1 {
                writeln!(f)?;
            }
        }
        Ok(())
    }
}

impl From<&Matrix<bool>> for Grid {
    fn from(matrix: &Matrix<bool>) -> Self {
        let mut grid = Grid::new(matrix.columns, matrix.rows);
        for ((r, c), &v) in matrix.indices().zip(matrix.values()) {
            if v {
                grid.add_vertex((c, r));
            }
        }
        grid
    }
}

impl From<Matrix<bool>> for Grid {
    fn from(matrix: Matrix<bool>) -> Self {
        Grid::from(&matrix)
    }
}

impl PartialEq for Grid {
    fn eq(&self, other: &Self) -> bool {
        self.vertices_len() == other.vertices_len()
            && self.iter().zip(other.iter()).all(|(a, b)| a == b)
    }
}

impl Eq for Grid {}