1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
pub use kurbo;
use kurbo::{BezPath, ParamCurve, PathEl, Point, Rect};

#[derive(Debug, Copy, Clone)]
pub enum CubicApprox {
    //
    Linear,
    // Generates line segments
    Flatten(f64),
    // Fast but rough approximation (1-2 quads)
    Midpoint,
    // Generates quadratic segments
    Lyon(f64),
}

pub fn break_path(orig: &BezPath, cubic_approx: CubicApprox) -> BezPath {
    let mut initial = Point::ORIGIN;
    let mut p0 = Point::ORIGIN;
    let mut path = BezPath::new();

    fn add_quad(path: &mut BezPath, p0: Point, p1: Point, p2: Point) {
        // Split quadratic at parametric point t
        //
        // Returns new control points and midpoint
        fn split(t: f64, p0: Point, p1: Point, p2: Point) -> [Point; 3] {
            let pa = p0.lerp(p1, t);
            let pc = p1.lerp(p2, t);
            let pb = pa.lerp(pc, t);

            [pa, pb, pc]
        }

        let aabb = Rect::from_points(p0, p1);
        let tx = if aabb.min_x() > p1.x || p1.x > aabb.max_x() {
            Some((p0.x - p1.x) / (p0.x - 2.0 * p1.x + p2.x))
        } else {
            None
        };
        let ty = if aabb.min_y() > p1.y || p1.y > aabb.max_y() {
            Some((p0.y - p1.y) / (p0.y - 2.0 * p1.y + p2.y))
        } else {
            None
        };

        match (tx, ty) {
            (Some(tx), Some(ty)) => {
                let t0 = tx.min(ty);
                let t1 = (tx.max(ty) - t0) / (1.0 - t0);

                let [pa0, pb0, pc0] = split(t0, p0, p1, p2);
                let [pa1, pb1, pc1] = split(t1, pb0, pc0, p2);

                path.quad_to(pa0, pb0);
                path.quad_to(pa1, pb1);
                path.quad_to(pc1, p2);
            }
            (Some(t), None) | (None, Some(t)) => {
                let [pa, pb, pc] = split(t, p0, p1, p2);
                path.quad_to(pa, pb);
                path.quad_to(pc, p2);
            }
            (None, None) => {
                path.quad_to(p1, p2);
            }
        }
    }

    for elem in orig {
        match elem {
            PathEl::MoveTo(p) => {
                path.move_to(p);
                p0 = p;
                initial = p;
            }
            PathEl::LineTo(p) => {
                path.line_to(p);
                p0 = p;
            }
            PathEl::QuadTo(p1, p2) => {
                add_quad(&mut path, p0, p1, p2);
                p0 = p2;
            }
            PathEl::CurveTo(p1, p2, p3) => {
                match cubic_approx {
                    CubicApprox::Linear => {
                        path.line_to(p3);
                    }
                    CubicApprox::Flatten(tolerance) => {
                        let mut subpath = BezPath::new();
                        subpath.move_to(p0);
                        subpath.curve_to(p1, p2, p3);
                        kurbo::flatten(subpath, tolerance, |el| match el {
                            PathEl::MoveTo(_) => {}
                            PathEl::LineTo(p) => {
                                path.line_to(p);
                                p0 = p;
                            }
                            _ => unreachable!(),
                        });
                    }
                    CubicApprox::Midpoint => {
                        // 3.5 Alternative approximation of cubic curves
                        if p0 == p1 {
                            add_quad(&mut path, p0, p2, p3);
                        } else if p2 == p3 {
                            add_quad(&mut path, p0, p1, p3);
                        } else {
                            let p_ca = p0.lerp(p1, 0.75);
                            let p_cb = p3.lerp(p2, 0.75);
                            let p_m = p_ca.midpoint(p_cb);
                            add_quad(&mut path, p0, p_ca, p_m);
                            add_quad(&mut path, p_m, p_cb, p3);
                        }
                    }
                    CubicApprox::Lyon(tolerance) => {
                        use lyon_geom::{
                            cubic_bezier::CubicBezierSegment,
                            cubic_to_quadratic::cubic_to_quadratics,
                        };

                        // monotonic variant appears to be buggy (v0.15)
                        cubic_to_quadratics(
                            &CubicBezierSegment {
                                from: [p0.x, p0.y].into(),
                                ctrl1: [p1.x, p1.y].into(),
                                ctrl2: [p2.x, p2.y].into(),
                                to: [p3.x, p3.y].into(),
                            },
                            tolerance,
                            &mut |segment| {
                                add_quad(
                                    &mut path,
                                    Point::new(segment.from.x, segment.from.y),
                                    Point::new(segment.ctrl.x, segment.ctrl.y),
                                    Point::new(segment.to.x, segment.to.y),
                                );
                            },
                        );
                    }
                }

                p0 = p3;
            }
            PathEl::ClosePath => {
                path.close_path();
                p0 = initial;
            }
        }
    }
    path
}

pub fn monotonize_quads(orig: &BezPath) -> BezPath {
    let mut initial = Point::ORIGIN;
    let mut p0 = Point::ORIGIN;
    let mut path = BezPath::new();

    fn split_quad(path: &mut BezPath, p0: Point, p1: Point, p2: Point) {
        let min = Point::new(p0.x.min(p2.x), p0.y.min(p2.y));
        let max = Point::new(p0.x.max(p2.x), p0.y.max(p2.y));

        let tx = if p1.x < min.x || max.x < p1.x {
            Some((p0.x - p1.x) / (p0.x - 2.0 * p1.x + p2.x))
        } else {
            None
        };

        let ty = if p1.y < min.y || max.y < p1.y {
            Some((p0.y - p1.y) / (p0.y - 2.0 * p1.y + p2.y))
        } else {
            None
        };

        match (tx, ty) {
            (Some(tx), Some(ty)) => {
                let (t0, t1) = (tx.min(ty), tx.max(ty));

                let t = t0;
                let c2 = kurbo::QuadBez::new(p0, p1, p2).eval(t);
                let c1 = kurbo::Line::new(p0, p1).eval(t);
                let c3 = kurbo::Line::new(p1, p2).eval(t);

                let t = (t1 - t0) / (1.0 - t1);
                let c5 = kurbo::QuadBez::new(c2, c3, p2).eval(t);
                let c4 = kurbo::Line::new(c2, c3).eval(t);
                let c6 = kurbo::Line::new(c3, p2).eval(t);

                path.quad_to(c1, c2);
                path.quad_to(c4, c5);
                path.quad_to(c6, p2);
            }
            (Some(t), None) | (None, Some(t)) => {
                let p = kurbo::QuadBez::new(p0, p1, p2).eval(t);
                let p10 = kurbo::Line::new(p0, p1).eval(t);
                let p11 = kurbo::Line::new(p1, p2).eval(t);
                path.quad_to(p10, p);
                path.quad_to(p11, p2);
            }
            (None, None) => path.quad_to(p1, p2),
        }
    }

    for elem in orig {
        match elem {
            PathEl::MoveTo(p) => {
                path.move_to(p);
                p0 = p;
                initial = p;
            }
            PathEl::LineTo(p) => {
                path.line_to(p);
                p0 = p;
            }
            PathEl::QuadTo(p1, p2) => {
                split_quad(&mut path, p0, p1, p2);
                p0 = p2;
            }
            PathEl::CurveTo(p1, p2, p3) => {
                // quads only
                path.curve_to(p1, p2, p3);
                p0 = p3;
            }
            PathEl::ClosePath => {
                path.close_path();
                p0 = initial;
            }
        }
    }

    path
}