1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
use std::mem;

use crate::common::{
    number::build_number,
    data::Data,
    opcode::Opcode,
    lambda::Lambda,
    closure::Closure,
};

use crate::vm::{
    trace::Trace,
    // tag::Tagged,
    stack::Stack,
};

/// A `VM` executes bytecode lambda closures.
/// (That's a mouthful - think bytecode + some context).
/// VM initialization overhead is tiny,
/// and each VM's state is self-contained,
/// so more than one can be spawned if needed.
#[derive(Debug)]
pub struct VM {
    closure: Closure,
    stack:   Stack,
    ip:      usize,
}

// NOTE: use Opcode::same and Opcode.to_byte() rather than actual bytes
// Don't worry, the compiler *should* get rid of this overhead and just use bytes

// this impl contains initialization, helper functions, and the core interpreter loop
// the next impl contains opcode implementations
impl VM {
    /// Initialize a new VM.
    /// To run the VM, a lambda must be passed to it through `run`.
    pub fn init() -> VM {
        VM {
            closure: Closure::wrap(Lambda::empty()),
            stack: Stack::init(),
            ip:    0,
        }
    }

    /// Advances to the next instruction.
    pub fn next(&mut self)                           { self.ip += 1; }
    /// Jumps past the end of the block, causing the current lambda to return.
    pub fn terminate(&mut self) -> Result<(), Trace> { self.ip = self.closure.lambda.code.len(); Ok(()) }
    /// Advances IP, returns `Ok`. Used in Bytecode implementations.
    pub fn done(&mut self)      -> Result<(), Trace> { self.next(); Ok(()) }
    /// Returns the current instruction as a byte.
    pub fn peek_byte(&mut self) -> u8                { self.closure.lambda.code[self.ip] }
    /// Advances IP and returns the current instruction as a byte.
    pub fn next_byte(&mut self) -> u8                { self.next(); self.peek_byte() }

    /// Builds the next number in the bytecode stream.
    /// See `utils::number` for more.
    pub fn next_number(&mut self) -> usize {
        self.next();
        let remaining      = &self.closure.lambda.code[self.ip..];
        let (index, eaten) = build_number(remaining);
        self.ip += eaten - 1; // ip left on next op
        return index;
    }

    // core interpreter loop

    /// Dissasembles and interprets a single (potentially fallible) bytecode op.
    /// The op definitions follow in the next `impl` block.
    /// To see what each op does, check `common::opcode::Opcode`.
    pub fn step(&mut self) -> Result<(), Trace> {
        let opcode = Opcode::from_byte(self.peek_byte());

        match opcode {
            Opcode::Con     => self.con(),
            Opcode::Del     => self.del(),
            Opcode::Capture => self.capture(),
            Opcode::Save    => self.save(),
            Opcode::SaveCap => self.save_cap(),
            Opcode::Load    => self.load(),
            Opcode::LoadCap => self.load_cap(),
            Opcode::Call    => self.call(),
            Opcode::Return  => self.return_val(),
            Opcode::Closure => self.closure(),
            Opcode::Print   => self.print(),
        }
    }

    /// Suspends the current lambda and runs a new one on the VM.
    /// Runs until either success, in which it restores the state of the previous lambda,
    /// Or failure, in which it returns the runtime error.
    /// In the future, fibers will allow for error handling -
    /// right now, error in Passerine are practically panics.
    pub fn run(&mut self, closure: Closure) -> Result<(), Trace> {
        // cache current state, load new bytecode
        let old_closure = mem::replace(&mut self.closure, closure);
        let old_ip      = mem::replace(&mut self.ip,    0);
        // TODO: should lambdas store their own ip?

        let mut result = Ok(());

        while self.ip < self.closure.lambda.code.len() {
            // println!("before: {:?}", self.stack.stack);
            // println!("executing: {:?}", Opcode::from_byte(self.peek_byte()));
            if let error @ Err(_) = self.step() {
                // TODO: clean up stack on error
                result = error;
                // println!("Error!");
                break;
            };
            // println!("---");
        }
        // println!("after: {:?}", self.stack.stack);
        // println!("---");

        // return current state
        mem::drop(mem::replace(&mut self.closure, old_closure));
        self.ip = old_ip;

        // If something went wrong, the error will be returned.
        return result;
    }

    // TODO: there are a lot of optimizations that can be made
    // I'll list a few here:
    // - searching the stack for variables
    //   A global Hash-table has significantly less overhead for function calls
    // - cloning the heck out of everything - useless copies
    //   instead, lifetime analysis during compilation
    // - replace some panics with Result<()>s

    /// Load a constant and push it onto the stack.
    pub fn con(&mut self) -> Result<(), Trace> {
        // get the constant index
        let index = self.next_number();

        self.stack.push_data(self.closure.lambda.constants[index].clone());
        self.done()
    }

    /// Moves the top value on the stack to the heap,
    /// replacing it with a reference to the heapified value.
    /// > NOTE: Behaviour is not stabilized yet.
    pub fn capture(&mut self) -> Result<(), Trace> {
        // we need to use lambda captured, not closure captured!
        let index = self.next_number();

        // TODO: Write this all out efficiently?
        let reference = self.stack.heapify(index);   // move value to the heap
        self.closure.captureds.push(reference);
        self.done()
    }

    /// Save the topmost value on the stack into a variable.
    pub fn save(&mut self) -> Result<(), Trace> {
        let index = self.next_number();
        self.stack.set_local(index);
        self.done()
    }

    /// Save the topmost value on the stack into a captured variable.
    pub fn save_cap(&mut self) -> Result<(), Trace> {
        let index = self.next_number();
        let data  = self.stack.pop_data();
        mem::drop(self.closure.captureds[index].replace(data));
        self.done()
    }

    /// Push a copy of a variable's value onto the stack.
    pub fn load(&mut self) -> Result<(), Trace> {
        let index = self.next_number();
        self.stack.get_local(index);
        self.done()
    }

    /// Load a captured variable from the current closure.
    pub fn load_cap(&mut self) -> Result<(), Trace> {
        let index = self.next_number();
        // NOTE: should heaped data should only be present for variables?
        // self.closure.captureds[index].borrow().to_owned()
        self.stack.push_data(Data::Heaped(self.closure.captureds[index].clone()));
        self.done()
    }

    /// Delete the top item of the stack.
    pub fn del(&mut self) -> Result<(), Trace> {
        mem::drop(self.stack.pop_data());
        self.done()
    }

    pub fn print(&mut self) -> Result<(), Trace> {
        let data = self.stack.pop_data();
        println!("{}", data);
        self.stack.push_data(data);
        self.done()
    }

    // TODO: closures
    /// Call a function on the top of the stack, passing the next value as an argument.
    pub fn call(&mut self) -> Result<(), Trace> {
        let fun = match self.stack.pop_data() {
            Data::Closure(c) => c,
            o => return Err(Trace::error(
                "Call",
                &format!("The data '{}' is not a function and can not be called", o),
                vec![self.closure.lambda.index_span(self.ip)],
            )),
        };
        let arg = self.stack.pop_data();

        self.stack.push_frame();
        self.stack.push_data(arg);
        // println!("entering...");
        // TODO: keep the passerine call stack separated from the rust call stack.
        match self.run(fun) {
            Ok(()) => (),
            Err(mut trace) => {
                trace.add_context(self.closure.lambda.index_span(self.ip));
                return Err(trace);
            },
        };
        // println!("exiting...");

        self.done()
    }

    /// Return a value from a function.
    /// End the execution of the current lambda.
    /// Takes the number of locals on the stack
    /// Relpaces the last frame with the value on the top of the stack.
    /// Expects the stack to be a `[..., Frame, Local 1, ..., Local N, Data]`
    pub fn return_val(&mut self) -> Result<(), Trace> {
        // the value to be returned
        let val = self.stack.pop_data();

        // clear all locals
        let locals = self.next_number();
        for _ in 0..locals { self.del()?; }

        self.stack.pop_frame();    // remove the frame
        self.stack.push_data(val); // push the return value
        self.terminate()
    }

    pub fn closure(&mut self) -> Result<(), Trace> {
        let index = self.next_number();

        let lambda = match self.closure.lambda.constants[index].clone() {
            Data::Lambda(lambda) => lambda,
            _ => unreachable!("Expected a lambda to be wrapped with a closure"),
        };

        let mut closure = Closure::wrap(lambda);
        for upvalue in closure.lambda.captureds.iter().rev() {
            closure.captureds.push(self.closure.captureds[*upvalue].clone())
        }

        self.stack.push_data(Data::Closure(closure));
        self.done()
    }
}

#[cfg(test)]
mod test {
    use super::*;
    use crate::compiler::{
        parse::parse,
        lex::lex,
        gen::gen,
    };
    use crate::common::source::Source;

    fn inspect(source: &str) -> VM {
        let lambda = lex(Source::source(source))
            .and_then(parse)
            .and_then(gen)
            .map_err(|e| println!("{}", e))
            .unwrap();

        // println!("{:?}", lambda);
        let mut vm = VM::init();

        match vm.run(Closure::wrap(lambda)) {
            Ok(()) => vm,
            Err(e) => {
                println!("{}", e);
                panic!();
            },
        }
    }

    #[test]
    fn init_run() {
        inspect("x = 0.0");
    }

    #[test]
    fn block_expression() {
        inspect("x = false; boop = true; heck = { x = boop; x }; heck");
    }

    #[test]
    fn functions() {
        let mut vm = inspect("iden = x -> x; y = true; iden ({y = false; iden iden} (iden y))");
        let identity = vm.stack.pop_data();
        assert_eq!(identity, Data::Boolean(true));
    }

    #[test]
    fn fun_scope() {
        // y = (x -> { y = x; y ) 7.0; y
        let mut vm = inspect("one = 1.0\npi = 3.14\ne = 2.72\n\nx = w -> pi\nx 37.6");
        let pi = vm.stack.pop_data();
        assert_eq!(pi, Data::Real(3.14));
    }

    #[test]
    fn mutate_capture() {
        inspect("odd = (); even = x -> odd; odd = 1.0; even (); odd");
    }

    #[test]
    fn mutate_capture_fn() {
        inspect("\
            pi = 3.14\n\
            printpi = x -> print pi\n\
            \n\
            redef = ()\n\
            redef = w -> {\n    \
                w (printpi ())\n\
            }\n\
            \n\
            redef printpi\n\
        ");
    }

    // TODO: figure out how to make the following passerine code into a test
    // without entering into an infinite loop (which is the intended behaviour)
    // loop = ()
    // loop = y -> x -> {
    //     print y
    //     print x
    //     loop x y
    // }
    //
    // loop true false
}