1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
use crate::compiler::syntax::Syntax;
use crate::compiler::token::Token;
use crate::compiler::ast::AST;
use crate::common::span::{Span, Spanned};
use crate::common::data::Data;
use crate::vm::local::Local;

// This is a recursive descent parser that builds the AST
// TODO: the 'vacuum' seems kind of cheap.

// some sort of recursive descent parser, I guess
type Tokens<'a> = &'a [Spanned<Token>];
type Bite<'a>   = (Spanned<AST>, Tokens<'a>);
type Rule   = Box<dyn Fn(Tokens) -> Result<(Spanned<AST>, Tokens), Syntax>>;

pub fn parse<'a>(tokens: Vec<Spanned<Token>>) -> Result<Spanned<AST>, Syntax> {
    // parse the file
    // slices are easier to work with
    match block(&tokens) {
        // vaccum all extra seperators
        Ok((node, parsed)) => if vaccum(parsed, Token::Sep).is_empty()
            { Ok(node) } else { unreachable!() },
        // if there are still tokens left, something's gone wrong.
        // TODO: handle error
        _ => unreachable!(),
    }
}

// cookie-monster's helper functions

/// Consumes all next tokens that match.
/// For example, `[Sep, Sep, Sep, Number(...), Sep]`
/// when passed to `vaccum(..., Sep)`
/// would become `[Number(...), Sep]`.
/// Each parser rule is responsible for vaccuming its input.
fn vaccum(tokens: Tokens, token: Token) -> Tokens {
    // vaccums all leading tokens that match token
    let mut remaining = tokens;

    while !remaining.is_empty() {
        let t = &remaining[0].item;
        if t != &token { break; }
        remaining = &remaining[1..];
    }

    return remaining;
}

/// Expects an exact token to be next in a stream.
/// For example, `consume(stream, Bracket)` expects the next item in stream to be a `Bracket`.
fn consume(tokens: Tokens, token: Token) -> Result<Tokens, Syntax> {
    let t = match tokens.iter().next() {
        Some(t) => t,
        None => return Err(Syntax::error(
            "Unexpected EOF while parsing",
            Span::empty()
        )),
    };

    if t.item != token {
        return Err(Syntax::error(
            &format!(
                "Expected {:?}, found {:?}",
                token,
                t.item
            ),
            t.span.clone()
        ));
    }

    return Result::Ok(&tokens[1..]);
}

/// Given a list of parsing rules and a token stream,
/// This function returns the first rule result that successfully parses the token stream.
/// Think of 'or' for parser-combinators.
fn first(tokens: Tokens, rules: Vec<Rule>) -> Result<(Spanned<AST>, Tokens), Syntax> {
    for rule in rules {
        if let Result::Ok((ast, r)) = rule(tokens) {
            return Result::Ok((ast, r))
        }
    }

    match tokens.iter().next() {
        Some(t) => Err(Syntax::error("Unexpected construct", t.span.clone())),
        None    => Err(Syntax::error("Unexpected EOF while parsing", Span::empty())),
    }
}

// fn parse_op(tokens: Tokens, left: Rule, op: Token, right:Rule) -> Result<'e, (Spanned<'s, AST<'s, 'i>>, Tokens)> {
//     unimplemented!()
// }

/// Matches a literal block, i.e. a list of expressions seperated by separators.
/// Note that block expressions `{ e 1, ..., e n }` are blocks surrounded by `{}`.
fn block(tokens: Tokens) -> Result<(Spanned<AST>, Tokens), Syntax> {
    let mut expressions = vec![];
    let mut annotations = vec![];
    let mut remaining   = vaccum(tokens, Token::Sep);

    while !remaining.is_empty() {
        match call(remaining) {
            Result::Ok((e, r)) => {
                annotations.push(e.span.clone());
                expressions.push(e);
                remaining = r;
            },
            Err(_) => break,
        }

        // TODO: implement one-or-more, rename vaccum (which is really just a special case of zero or more)
        // expect at least one separator between statements
        // remaining = match consume(tokens, Token::Sep) { Result::Ok(r) => r, Err(_) => break };
        remaining = vaccum(remaining, Token::Sep);
        // println!("{:?}", remaining);
    }

    // TODO: is this true? an empty program is should be valid
    // what does it make sense for an empty block to return?
    // empty blocks don't make any sense - use unit
    if annotations.is_empty() {
        return Err(Syntax::error("Block can't be empty, use Unit '()' instead", Span::empty()))
    }

    let ast = Spanned::new(AST::block(expressions), Span::join(annotations));
    return Result::Ok((ast, remaining));
}

/// Matches a function call, i.e. `f x y z`.
/// Function calls are left binding,
/// so the above is parsed as `((f x) y) z`.
fn call(tokens: Tokens) -> Result<Bite, Syntax> {
    // try to eat an new expression
    // if it's successfull, nest like so:
    // previous = Call(previous, new)
    // empty    => error
    // single   => expression
    // multiple => call
    let (mut previous, mut remaining) = expr(vaccum(tokens, Token::Sep))?;

    while !remaining.is_empty() {
        match expr(remaining) {
            Result::Ok((arg, r)) => {
                remaining = r;
                let span = Span::combine(&previous.span, &arg.span);
                previous = Spanned::new(AST::call(previous, arg), span);
            },
            _ => break,
        }
    }

    return Result::Ok((previous, remaining));
}

/// Matches an expression, or more tightly binding expressions.
fn expr(tokens: Tokens) -> Result<Bite, Syntax> {
    let rules: Vec<Rule> = vec![
        Box::new(|s| expr_block(s)),
        Box::new(|s| expr_call(s)),
        Box::new(|s| op(s)),
        Box::new(|s| literal(s)),
    ];

    return first(tokens, rules);
}

/// Matches a literal block, `{ expression 1; ...; expression n }`.
fn expr_block(tokens: Tokens) -> Result<Bite, Syntax> {
    let start      = consume(tokens, Token::OpenBracket)?;
    let (ast, end) = block(start)?;
    let remaining  = consume(end, Token::CloseBracket)?;

    return Result::Ok((ast, remaining));
}

fn expr_call(tokens: Tokens) -> Result<Bite, Syntax> {
    let start      = consume(tokens, Token::OpenParen)?;
    let (ast, end) = call(start)?;
    let remaining  = consume(end, Token::CloseParen)?;

    return Result::Ok((ast, remaining));
}

fn op(tokens: Tokens) -> Result<Bite, Syntax> {
    assign(tokens)
}

/// Matches an assignment or more tightly binding expressions.
fn assign(tokens: Tokens) -> Result<Bite, Syntax> {
    let rules: Vec<Rule> = vec![
        Box::new(|s| assign_assign(s)),
        Box::new(|s| lambda(s)),
    ];

    return first(tokens, rules);
}

// TODO: implement parse_op and rewrite lambda / assign

/// Matches an actual assignment, `pattern = expression`.
fn assign_assign(tokens: Tokens) -> Result<Bite, Syntax> {
    // TODO: pattern matching support!
    // get symbol being assigned too
    let (next, mut remaining) = literal(tokens)?;
    let s = match next {
        // Destructure restucture
        Spanned { item: item @ AST::Symbol(_), span } => Spanned::new(item, span),
        other => return Err(Syntax::error("Expected symbol for assignment", other.span)),
    };

    // eat the = sign
    remaining = consume(remaining, Token::Assign)?;
    let (e, remaining) = call(remaining)?;
    let combined       = Span::combine(&s.span, &e.span);
    Result::Ok((Spanned::new(AST::assign(s, e), combined), remaining))
}

/// Matches a function, `pattern -> expression`.
fn lambda(tokens: Tokens) -> Result<Bite, Syntax> {
    // get symbol acting as arg to function
    let (next, mut remaining) = literal(tokens)?;
    let s = match next {
        Spanned { item: AST::Symbol(l), span } => Spanned::new(AST::symbol(l), span),
        other => return Err(Syntax::error("Expected symbol for function paramater", other.span)),
    };

    // eat the '->'
    remaining = consume(remaining, Token::Lambda)?;
    let (e, remaining) = call(remaining)?;
    let combined       = Span::combine(&s.span, &e.span);
    Result::Ok((Spanned::new(AST::lambda(s, e), combined), remaining))
}

/// Matches some literal data, such as a String or a Number.
fn literal(tokens: Tokens) -> Result<Bite, Syntax> {
    if let Some(Spanned { item: token, span }) = tokens.iter().next() {
        Result::Ok((Spanned::new(
            match token {
                Token::Symbol(l)  => AST::symbol(l.clone()),
                Token::Number(n)  => AST::data(n.clone()),
                Token::String(s)  => AST::data(s.clone()),
                Token::Boolean(b) => AST::data(b.clone()),
                _ => return Err(Syntax::error("Unexpected token", span.clone())),
            },
            span.clone()
        ), &tokens[1..]))
    } else {
        Err(Syntax::error("Unexpected EOF while parsing", Span::empty()))
    }
}

// TODO: ASTs can get really big, really fast - have tests in external file?
// #[cfg(test)]
// mod test {
//     use crate::pipeline::source::Source;
//     use crate::compiler::lex::lex;
//     use super::*;
//
//     #[test]
//     fn assignment() {
//         // who knew so little could mean so much?
//         // forget verbose, we should all write ~~lisp~~ ast
//         let source = Source::source("heck = false; naw = heck");
//
//         // oof, I wrote this out by hand
//         let result = AST::new(
//             Node::block(vec![
//                 AST::new(
//                     Node::assign(
//                         AST::new(Node::symbol(Local::new("heck".to_string())), Span::new(&source, 0, 4)),
//                         AST::new(Node::data(Data::Boolean(false)), Span::new(&source, 7, 5)),
//                     ),
//                     Span::new(&source, 0, 12),
//                 ),
//                 AST::new(
//                     Node::assign(
//                         AST::new(Node::Symbol(Local::new("naw".to_string())), Span::new(&source, 14, 3)),
//                         AST::new(Node::Symbol(Local::new("heck".to_string())), Span::new(&source, 20, 4)),
//                     ),
//                     Span::new(&source, 14, 10),
//                 ),
//             ]),
//             Span::new(&source, 0, 24),
//         );
//
//         assert_eq!(parse(lex(source).unwrap()), Result::Ok(result));
//     }
//
//     #[test]
//     fn failure() {
//         let source = Source::source("\n hello9 = {; ");
//
//         // assert_eq!(parse(lex(source).unwrap()), Err(CompilerError()));
//         // TODO: determing exactly which error is thrown
//         panic!();
//     }
//
//     #[test]
//     fn block() {
//         // TODO: Put this bad-boy somewhere else.
//         // maybe just have one test file and a huge hand-verified ast
//         let source = Source::source("x = true\n{\n\ty = {x; true; false}\n\tz = false\n}");
//         let parsed = parse(lex(source).unwrap());
//         let result = Result::Ok(
//             AST::new(
//                 Node::block(vec![
//                     AST::new(
//                         Node::assign(
//                             AST::new(Node::symbol(Local::new("x".to_string())), Span::new(&source, 0, 1)),
//                             AST::new(Node::data(Data::Boolean(true)),           Span::new(&source, 4, 4)),
//                         ),
//                         Span::new(&source, 0, 8)
//                     ),
//                     AST::new(Node::block(
//                         vec![
//                             AST::new(
//                                 Node::assign(
//                                     AST::new(Node::symbol(Local::new("y".to_string())), Span::new(&source, 12, 1)),
//                                     AST::new(
//                                         Node::block(vec![
//                                             AST::new(Node::symbol(Local::new("x".to_string())), Span::new(&source, 17, 1)),
//                                             AST::new(Node::data(Data::Boolean(true)),           Span::new(&source, 20, 4)),
//                                             AST::new(Node::data(Data::Boolean(false)),          Span::new(&source, 26, 5)),
//                                         ]),
//                                         Span::new(&source, 17, 14),
//                                     )
//                                 ),
//                                 Span::new(&source, 12, 19),
//                             ),
//                             AST::new(
//                                 Node::assign(
//                                     AST::new(Node::symbol(Local::new("z".to_string())),Span::new(&source, 34, 1)),
//                                     AST::new(Node::data(Data::Boolean(false)), Span::new(&source, 38, 5)),
//                                 ),
//                                 Span::new(&source, 34, 9),
//                             ),
//                         ]),
//                         Span::new(&source, 12, 31),
//                     ),
//                 ]),
//                 Span::new(&source, 0, 43),
//             ),
//         );
//         assert_eq!(parsed, result);
//     }
//
//     #[test]
//     fn number() {
//         let source = Source::source("number = { true; 0.0 }");
//         let parsed = parse(lex(source).unwrap());
//         let result = Result::Ok(
//             AST::new(
//                 Node::block(vec![
//                     AST::new(
//                         Node::assign(
//                             AST::new(Node::symbol(Local::new("number".to_string())), Span::new(&source, 0, 6)),
//                             AST::new(
//                                 Node::block(vec![
//                                     AST::new(Node::data(Data::Boolean(true)), Span::new(&source, 11, 4)),
//                                     AST::new(Node::data(Data::Real(0.0)), Span::new(&source, 17, 3)),
//                                 ]),
//                                 Span::new(&source, 11, 9),
//                             ),
//                         ),
//                         Span::new(&source, 0, 20),
//                     )
//                 ]),
//                 Span::new(&source, 0, 20),
//             ),
//         );
//
//         assert_eq!(parsed, result);
//     }
//
//     #[test]
//     fn functions() {
//         let source = Source::source("applyzero = fun -> arg -> fun arg 0.0");
//         let parsed = parse(lex(source).unwrap());
//         let result = Result::Ok(
//             AST::new(
//                 Node::block(vec![
//                     AST::new(
//                         Node::assign(
//                             AST::new(Node::symbol(Local::new("applyzero".to_string())), Span::new(&source, 0, 9)),
//                             AST::new(
//                                 Node::lambda(
//                                     AST::new(Node::symbol(Local::new("fun".to_string())), Span::new(&source, 12, 3)),
//                                     AST::new(Node::lambda(
//                                         AST::new(Node::symbol(Local::new("arg".to_string())),  Span::new(&source, 19, 3)),
//                                         AST::new(
//                                             Node::call(
//                                                 AST::new(
//                                                     Node::call(
//                                                         AST::new(Node::symbol(Local::new("fun".to_string())), Span::new(&source, 26, 3)),
//                                                         AST::new(Node::symbol(Local::new("arg".to_string())), Span::new(&source, 30, 3)),
//                                                     ),
//                                                     Span::new(&source, 26, 7),
//                                                 ),
//                                                 AST::new(Node::data(Data::Real(0.0)), Span::new(&source, 34, 3)),
//                                             ),
//                                             Span::new(&source, 26, 11)
//                                         )
//                                     ),
//                                     Span::new(&source, 19, 18),
//                                 ),
//                             ),
//                             Span::new(&source, 12, 25),
//                         ),
//                     ),
//                     Span::new(&source, 0, 37),
//                 )]),
//                 Span::new(&source, 0, 37),
//             ),
//         );
//
//         assert_eq!(parsed, result);
//     }
//
//     #[test]
//     fn calling() {
//         let source = Source::source("bink (bonk 0.0)");
//         let parsed = parse(lex(source).unwrap());
//
//         let result = Result::Ok(
//             AST::new(
//                 Node::block(vec![
//                     AST::new(
//                         Node::call (
//                             AST::new(Node::symbol(Local::new("bink".to_string())), Span::new(&source, 0, 4)),
//                             AST::new(
//                                 Node::call(
//                                     AST::new(Node::symbol(Local::new("bonk".to_string())), Span::new(&source, 6, 4)),
//                                     AST::new(Node::data(Data::Real(0.0)), Span::new(&source, 11, 3)),
//                                 ),
//                                 Span::new(&source, 6, 8),
//                             ),
//                         ),
//                         Span::new(&source, 0, 14)
//                     ),
//                 ]),
//                 Span::new(&source, 0, 14),
//             ),
//         );
//         assert_eq!(parsed, result);
//     }
// }