1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
use crate::bounding_volume::SimdAABB;
use crate::math::{Isometry, Real, SimdBool, SimdReal, Vector, SIMD_WIDTH};
use crate::partitioning::{SimdBestFirstVisitStatus, SimdBestFirstVisitor};
use crate::query::QueryDispatcher;
use crate::shape::{Shape, TypedSimdCompositeShape};
use crate::utils::IsometryOpt;
use simba::simd::{SimdBool as _, SimdPartialOrd, SimdValue};

/// Smallest distance between a composite shape and any other shape.
pub fn distance_composite_shape_shape<D: ?Sized, G1: ?Sized>(
    dispatcher: &D,
    pos12: &Isometry<Real>,
    g1: &G1,
    g2: &dyn Shape,
) -> Real
where
    D: QueryDispatcher,
    G1: TypedSimdCompositeShape,
{
    let mut visitor = CompositeShapeAgainstAnyDistanceVisitor::new(dispatcher, pos12, g1, g2);
    g1.typed_quadtree()
        .traverse_best_first(&mut visitor)
        .expect("The composite shape must not be empty.")
        .1
         .1
}

/// Smallest distance between a shape and a composite shape.
pub fn distance_shape_composite_shape<D: ?Sized, G2: ?Sized>(
    dispatcher: &D,
    pos12: &Isometry<Real>,
    g1: &dyn Shape,
    g2: &G2,
) -> Real
where
    D: QueryDispatcher,
    G2: TypedSimdCompositeShape,
{
    distance_composite_shape_shape(dispatcher, &pos12.inverse(), g2, g1)
}

/// A visitor for computing the distance between a composite shape and a shape.
pub struct CompositeShapeAgainstAnyDistanceVisitor<'a, D: ?Sized, G1: ?Sized + 'a> {
    msum_shift: Vector<SimdReal>,
    msum_margin: Vector<SimdReal>,

    dispatcher: &'a D,
    pos12: &'a Isometry<Real>,
    g1: &'a G1,
    g2: &'a dyn Shape,
}

impl<'a, D: ?Sized, G1: ?Sized + 'a> CompositeShapeAgainstAnyDistanceVisitor<'a, D, G1> {
    /// Initialize a visitor for computing the distance between a composite shape and a shape.
    pub fn new(
        dispatcher: &'a D,
        pos12: &'a Isometry<Real>,
        g1: &'a G1,
        g2: &'a dyn Shape,
    ) -> Self {
        let ls_aabb2 = g2.compute_aabb(pos12);

        Self {
            dispatcher,
            msum_shift: Vector::splat(-ls_aabb2.center().coords),
            msum_margin: Vector::splat(ls_aabb2.half_extents()),
            pos12,
            g1,
            g2,
        }
    }
}

impl<'a, D: ?Sized, G1: ?Sized> SimdBestFirstVisitor<G1::PartId, SimdAABB>
    for CompositeShapeAgainstAnyDistanceVisitor<'a, D, G1>
where
    D: QueryDispatcher,
    G1: TypedSimdCompositeShape,
{
    type Result = (G1::PartId, Real);

    fn visit(
        &mut self,
        best: Real,
        bv: &SimdAABB,
        data: Option<[Option<&G1::PartId>; SIMD_WIDTH]>,
    ) -> SimdBestFirstVisitStatus<Self::Result> {
        // Compute the minkowski sum of the two AABBs.
        let msum = SimdAABB {
            mins: bv.mins + self.msum_shift + (-self.msum_margin),
            maxs: bv.maxs + self.msum_shift + self.msum_margin,
        };
        let dist = msum.distance_to_origin();
        let mask = dist.simd_lt(SimdReal::splat(best));

        if let Some(data) = data {
            let bitmask = mask.bitmask();
            let mut weights = [0.0; SIMD_WIDTH];
            let mut mask = [false; SIMD_WIDTH];
            let mut results = [None; SIMD_WIDTH];

            for ii in 0..SIMD_WIDTH {
                if (bitmask & (1 << ii)) != 0 && data[ii].is_some() {
                    let part_id = *data[ii].unwrap();
                    let mut dist = Ok(0.0);
                    self.g1.map_untyped_part_at(part_id, |part_pos1, g1| {
                        dist =
                            self.dispatcher
                                .distance(&part_pos1.inv_mul(self.pos12), g1, self.g2);
                    });

                    match dist {
                        Ok(dist) => {
                            if dist == 0.0 {
                                return SimdBestFirstVisitStatus::ExitEarly(Some((part_id, 0.0)));
                            } else {
                                weights[ii] = dist;
                                mask[ii] = dist < best;
                                results[ii] = Some((part_id, dist));
                            }
                        }
                        Err(_) => {}
                    }
                }
            }

            SimdBestFirstVisitStatus::MaybeContinue {
                weights: SimdReal::from(weights),
                mask: SimdBool::from(mask),
                results,
            }
        } else {
            SimdBestFirstVisitStatus::MaybeContinue {
                weights: dist,
                mask,
                results: [None; SIMD_WIDTH],
            }
        }
    }
}