1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
use na::{DVector, Point2};
use std::iter;

use crate::bounding_volume::AABB;
use crate::math::{Real, Vector};

use crate::shape::Segment;

#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[derive(Clone, Debug)]
/// A 2D heightfield.
pub struct HeightField {
    heights: DVector<Real>,
    scale: Vector<Real>,
    removed: Vec<bool>,
    aabb: AABB,
}

impl HeightField {
    /// Creates a new 2D heightfield with the given heights and scale factor.
    pub fn new(heights: DVector<Real>, scale: Vector<Real>) -> Self {
        assert!(
            heights.len() > 1,
            "A heightfield heights must have at least 2 elements."
        );

        let max = heights.max();
        let min = heights.min();
        let hscale = scale * na::convert::<_, Real>(0.5);
        let aabb = AABB::new(
            Point2::new(-hscale.x, min * scale.y),
            Point2::new(hscale.x, max * scale.y),
        );

        HeightField {
            heights,
            scale,
            aabb,
            removed: Vec::new(),
        }
    }

    /// The number of cells of this heightfield.
    pub fn num_cells(&self) -> usize {
        self.heights.len() - 1
    }

    /// The height at each cell endpoint.
    pub fn heights(&self) -> &DVector<Real> {
        &self.heights
    }

    /// The scale factor applied to this heightfield.
    pub fn scale(&self) -> &Vector<Real> {
        &self.scale
    }

    /// The AABB of this heightfield.
    pub fn root_aabb(&self) -> &AABB {
        &self.aabb
    }

    /// The width of a single cell of this heightfield.
    pub fn cell_width(&self) -> Real {
        self.unit_cell_width() * self.scale.x
    }

    /// The width of a single cell of this heightfield, without taking the scale factor into account.
    pub fn unit_cell_width(&self) -> Real {
        1.0 / na::convert::<f64, Real>(self.heights.len() as f64 - 1.0)
    }

    /// The left-most x-coordinate of this heightfield.
    pub fn start_x(&self) -> Real {
        self.scale.x * na::convert::<f64, Real>(-0.5)
    }

    fn quantize_floor(&self, val: Real, seg_length: Real) -> usize {
        let _0_5: Real = na::convert::<f64, Real>(0.5);
        let i = na::clamp(
            ((val + _0_5) / seg_length).floor(),
            0.0,
            na::convert::<f64, Real>((self.num_cells() - 1) as f64),
        );
        na::convert_unchecked::<Real, f64>(i) as usize
    }

    fn quantize_ceil(&self, val: Real, seg_length: Real) -> usize {
        let _0_5: Real = na::convert::<f64, Real>(0.5);
        let i = na::clamp(
            ((val + _0_5) / seg_length).ceil(),
            0.0,
            na::convert::<f64, Real>(self.num_cells() as f64),
        );
        na::convert_unchecked::<Real, f64>(i) as usize
    }

    /// Index of the cell a point is on after vertical projection.
    pub fn cell_at_point(&self, pt: &Point2<Real>) -> Option<usize> {
        let _0_5: Real = na::convert::<f64, Real>(0.5);
        let scaled_pt = pt.coords.component_div(&self.scale);
        let seg_length = self.unit_cell_width();

        if scaled_pt.x < -_0_5 || scaled_pt.x > _0_5 {
            // Outside of the heightfield bounds.
            None
        } else {
            Some(self.quantize_floor(scaled_pt.x, seg_length))
        }
    }

    /// Iterator through all the segments of this heightfield.
    pub fn segments<'a>(&'a self) -> impl Iterator<Item = Segment> + 'a {
        // FIXME: this is not very efficient since this wil
        // recompute shared points twice.
        (0..self.num_cells()).filter_map(move |i| self.segment_at(i))
    }

    /// The i-th segment of the heightfield if it has not been removed.
    pub fn segment_at(&self, i: usize) -> Option<Segment> {
        if i >= self.num_cells() || self.is_segment_removed(i) {
            return None;
        }

        let _0_5: Real = na::convert::<f64, Real>(0.5);
        let seg_length = 1.0 / na::convert::<f64, Real>(self.heights.len() as f64 - 1.0);

        let x0 = -_0_5 + seg_length * na::convert::<f64, Real>(i as f64);
        let x1 = x0 + seg_length;

        let y0 = self.heights[i + 0];
        let y1 = self.heights[i + 1];

        let mut p0 = Point2::new(x0, y0);
        let mut p1 = Point2::new(x1, y1);

        // Apply scales:
        p0.coords.component_mul_assign(&self.scale);
        p1.coords.component_mul_assign(&self.scale);

        Some(Segment::new(p0, p1))
    }

    /// Mark the i-th segment of this heightfield as removed or not.
    pub fn set_segment_removed(&mut self, i: usize, removed: bool) {
        if self.removed.len() == 0 {
            self.removed = iter::repeat(false).take(self.num_cells()).collect()
        }

        self.removed[i] = removed
    }

    /// Checks if the i-th segment has been removed.
    pub fn is_segment_removed(&self, i: usize) -> bool {
        self.removed.len() != 0 && self.removed[i]
    }

    /// Applies `f` to each segment of this heightfield that intersects the given `aabb`.
    pub fn map_elements_in_local_aabb(&self, aabb: &AABB, f: &mut impl FnMut(u32, &Segment)) {
        let _0_5: Real = na::convert::<f64, Real>(0.5);
        let ref_mins = aabb.mins.coords.component_div(&self.scale);
        let ref_maxs = aabb.maxs.coords.component_div(&self.scale);
        let seg_length = 1.0 / na::convert::<f64, Real>(self.heights.len() as f64 - 1.0);

        if ref_maxs.x < -_0_5 || ref_mins.x > _0_5 {
            // Outside of the heightfield bounds.
            return;
        }

        let min_x = self.quantize_floor(ref_mins.x, seg_length);
        let max_x = self.quantize_ceil(ref_maxs.x, seg_length);

        // FIXME: find a way to avoid recomputing the same vertices
        // multiple times.
        for i in min_x..max_x {
            if self.is_segment_removed(i) {
                continue;
            }

            let x0 = -_0_5 + seg_length * na::convert::<f64, Real>(i as f64);
            let x1 = x0 + seg_length;

            let y0 = self.heights[i + 0];
            let y1 = self.heights[i + 1];

            if (y0 > ref_maxs.y && y1 > ref_maxs.y) || (y0 < ref_mins.y && y1 < ref_mins.y) {
                continue;
            }

            let mut p0 = Point2::new(x0, y0);
            let mut p1 = Point2::new(x1, y1);

            // Apply scales:
            p0.coords.component_mul_assign(&self.scale);
            p1.coords.component_mul_assign(&self.scale);

            // Build the segment.
            let seg = Segment::new(p0, p1);

            // Call the callback.
            f(i as u32, &seg);
        }
    }
}