1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
use crate::generators::grammar_config::FnScannerStateResolver;
use crate::{generate_name, group_by, Cfg, GrammarConfig, Pr, Rhs, Symbol};
use log::trace;
use miette::Result;
use std::collections::hash_map::HashMap;
use std::hash::Hash;

struct TransformationOperand<'a> {
    modified: bool,
    pr: Vec<Pr>,
    resolver: &'a FnScannerStateResolver,
}

/// Substitutes a set of rules with given name in the given rules with the result of
/// the transformation
fn apply_rule_transformation<'a>(
    operand: TransformationOperand<'a>,
    rule_name: &str,
    trans: impl Fn(Vec<Pr>) -> Vec<Pr>,
) -> TransformationOperand<'a> {
    let TransformationOperand {
        modified: _,
        mut pr,
        resolver,
    } = operand;
    if let Some(rule_index) = pr.iter().position(|r| r.get_n_str() == rule_name) {
        let mut affected_rules = vec![];
        while let Some(rule_index) = pr.iter().position(|r| r.get_n_str() == rule_name) {
            affected_rules.push(pr.remove(rule_index));
        }
        let mut upper_rules = pr.split_off(rule_index);
        pr.append(&mut trans(affected_rules));
        pr.append(&mut upper_rules);

        TransformationOperand {
            modified: true,
            pr,
            resolver,
        }
    } else {
        TransformationOperand {
            modified: false,
            pr,
            resolver,
        }
    }
}

fn find_prefix<T>(candidates: &[Vec<T>]) -> Vec<T>
where
    T: Eq + Hash + Clone,
{
    type Candidates<T> = [Vec<T>];

    fn find_prefix<T>(candidates: &Candidates<T>, n: usize) -> Vec<T>
    where
        T: Eq + Hash + Clone,
    {
        let candidates_with_len_n = candidates
            .iter()
            .filter(|c| c.len() >= n)
            .map(|c| &c[..n])
            .collect::<Vec<&[T]>>();

        if candidates_with_len_n.len() < 2 {
            return vec![]; // We need at least two items that share the same prefix!
        }

        let groups: HashMap<&[T], i32> =
            candidates_with_len_n
                .iter()
                .fold(HashMap::new(), |mut acc, c| {
                    if let Some(v) = acc.get_mut(c) {
                        *v += 1; // Increment member count per group
                    } else {
                        acc.insert(c, 1); // Insert new group with one member
                    };
                    acc
                });
        // Choose the group with the most members
        if let Some((k, v)) = groups.iter().max_by_key(|c| c.1) {
            if v > &1 {
                // Found prefix is only useful if the group contains more than one member
                k.to_vec()
            } else {
                vec![]
            }
        } else {
            vec![]
        }
    }

    fn find_longest_prefix<T>(candidates: &Candidates<T>, n: usize) -> Vec<T>
    where
        T: Eq + Hash + Clone,
    {
        let p1 = find_prefix(candidates, n);
        let p2 = find_prefix(candidates, n + 1);
        match (&p1[..], &p2[..]) {
            (&[], &[]) => vec![],
            (_, &[]) => p1,
            (_, _) => {
                let p3 = find_longest_prefix(candidates, n + 2);
                if p3.is_empty() {
                    p2
                } else {
                    p3
                }
            }
        }
    }

    find_longest_prefix(candidates, 1)
}

/// Finds the longest left prefixes in rules given.
/// Can be used to factor out these left prefixes later.
fn find_longest_prefixes(rules: &[Pr]) -> Vec<(String, Rhs)> {
    let rule_groups = group_by(rules, |r| r.get_n_str().to_owned());
    rule_groups.iter().fold(Vec::new(), |mut acc, e| {
        let (rule_name, rules) = &e;
        let prefix = find_prefix(
            &rules
                .iter()
                .map(|r| r.get_r().clone())
                .collect::<Vec<Rhs>>(),
        );
        if !prefix.is_empty() {
            acc.push((rule_name.clone(), prefix));
        }
        acc
    })
}

// ---------------------------------------------------
// Part of the Public API
// *Changes will affect crate's version according to semver*
// ---------------------------------------------------
///
/// Applies left-factoring to the given grammar.
///
pub fn left_factor(g: &Cfg) -> Cfg {
    let Cfg { st, pr } = g.clone();

    let scanner_state_resolver = GrammarConfig::dummy_scanner_state_resolver();
    let format_productions = |pr: &[Pr]| -> Result<String> {
        Ok(pr
            .iter()
            .fold(Ok(Vec::new()), |acc: Result<Vec<String>>, p| {
                if let Ok(mut acc) = acc {
                    acc.push(p.format(&scanner_state_resolver)?);
                    Ok(acc)
                } else {
                    acc
                }
            })?
            .join("\n"))
    };

    let mut operand = TransformationOperand {
        modified: true,
        pr,
        resolver: &scanner_state_resolver,
    };

    fn mod_factor<'a>(
        exclusions: &[String],
        prefix: &[Symbol],
        rules: Vec<Pr>,
        resolver: &'a FnScannerStateResolver,
    ) -> Vec<Pr> {
        let format_symbols = |symbols: &[Symbol]| -> Result<String> {
            Ok(symbols
                .iter()
                .fold(Ok(Vec::new()), |acc: Result<Vec<String>>, s| {
                    if let Ok(mut acc) = acc {
                        acc.push(s.format(resolver)?);
                        Ok(acc)
                    } else {
                        acc
                    }
                })?
                .join(" "))
        };

        fn factor_out_rule(pr_name: &str, prefix: &[Symbol], pr: Pr) -> Pr {
            let prefix_len = prefix.len();
            if pr.len() < prefix_len || pr.get_r()[0..prefix_len] != prefix[..] {
                // This production of a production-set don't share the prefix - leave it unchanged.
                pr
            } else {
                let (_, mut rhs, sem) = pr.take();
                let rhs = rhs.split_off(prefix_len);
                Pr::new(pr_name, rhs).with_attribute(sem)
            }
        }

        if rules.is_empty() {
            panic!(
                "Internal error: \"Expected a non-empty production list!\" in {}({})",
                file!(),
                line!()
            );
        }

        trace!(
            "\nPrefix to factor out:\n{}",
            format_symbols(prefix).expect("format failed")
        );

        // We change the productions A -> prefix suffix to one new production A -> prefix A'
        // where A' is a new production of the form:
        // A' -> suffix1|suffix2|... i.e. A' -> suffix1;  A' -> suffix2;  ...
        let first_rule = &rules[0];
        let suffix_rule_name =
            generate_name(exclusions, first_rule.get_n_str().to_owned() + "Suffix");
        let mut prod = prefix.to_owned();
        prod.push(Symbol::n(&suffix_rule_name));
        let prefix_rule = Pr::new(first_rule.get_n_str(), prod);
        let mut left_factored_rules = rules
            .iter()
            .map(|r| factor_out_rule(&suffix_rule_name, prefix, r.clone()))
            .collect::<Vec<Pr>>();

        left_factored_rules.insert(0, prefix_rule);
        left_factored_rules
    }

    fn var_names(pr: &[Pr]) -> Vec<String> {
        pr.iter().fold(Vec::new(), |mut acc, p| {
            if !acc.contains(&p.get_n()) {
                acc.push(p.get_n_str().to_owned());
            }
            acc = p.get_r().iter().fold(acc, |mut acc, s| {
                if let Symbol::N(n, ..) = s {
                    if !acc.contains(n) {
                        acc.push(n.clone());
                    }
                }
                acc
            });
            acc
        })
    }

    fn factor_out_prefix<'a>(
        operand: TransformationOperand<'a>,
        prefix: &(String, Rhs),
    ) -> TransformationOperand<'a> {
        let exclusions = var_names(&operand.pr);
        let resolver = operand.resolver;
        apply_rule_transformation(operand, &prefix.0, |rs| {
            mod_factor(&exclusions, &prefix.1, rs, resolver)
        })
    }

    fn factor_out(operand: TransformationOperand) -> TransformationOperand {
        let prefixes = find_longest_prefixes(&operand.pr);

        prefixes.iter().fold(operand, &factor_out_prefix)
    }

    // $env:RUST_LOG="parol::transformation::left_factoring=trace"
    trace!(
        "\n{}",
        format_productions(&operand.pr).expect("format failed")
    );

    while operand.modified {
        operand.modified = false;
        operand = factor_out(operand);
        trace!(
            "\n{}",
            format_productions(&operand.pr).expect("format failed")
        );
    }
    Cfg { st, pr: operand.pr }
}

#[cfg(test)]
mod tests {
    use super::find_prefix;

    const EMPTY_VEC: Vec<i32> = Vec::new();

    #[test]
    fn check_find_prefix_on_empty() {
        let candidates: Vec<Vec<i32>> = vec![vec![]];
        assert_eq!(EMPTY_VEC, find_prefix(&candidates));
    }

    #[test]
    fn check_find_prefix_on_single() {
        let candidates = vec![vec![1, 2, 3]];
        // There is no common prefix for just one single sequence
        assert_eq!(EMPTY_VEC, find_prefix(&candidates));
    }

    #[test]
    fn check_find_prefix_on_diffs() {
        let candidates = vec![vec![4, 5], vec![1, 2, 3]];
        assert_eq!(EMPTY_VEC, find_prefix(&candidates));
    }

    #[test]
    fn check_find_prefix_1() {
        let candidates = vec![
            vec![1, 2, 3, 4, 5],
            vec![2, 3, 4, 5],
            vec![1, 2, 3, 5],
            vec![1, 2, 6, 5],
        ];
        assert_eq!(vec![1, 2, 3], find_prefix(&candidates));
    }
    #[test]
    fn check_find_prefix_2() {
        let candidates = vec![vec![1, 2, 3, 5], vec![1, 2, 6, 5]];
        assert_eq!(vec![1, 2], find_prefix(&candidates));
    }
}