1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
// Copyright 2016 Amanieu d'Antras
//
// Licensed under the Apache License, Version 2.0, <LICENSE-APACHE or
// http://apache.org/licenses/LICENSE-2.0> or the MIT license <LICENSE-MIT or
// http://opensource.org/licenses/MIT>, at your option. This file may not be
// copied, modified, or distributed except according to those terms.

use std::sync::atomic::{AtomicBool, Ordering};
use std::time::{Duration, Instant};
use parking_lot::{self, UnparkResult};
use mutex::{MutexGuard, guard_lock};

/// A type indicating whether a timed wait on a condition variable returned
/// due to a time out or not.
#[derive(Debug, PartialEq, Eq, Copy, Clone)]
pub struct WaitTimeoutResult(bool);

impl WaitTimeoutResult {
    /// Returns whether the wait was known to have timed out.
    #[inline]
    pub fn timed_out(&self) -> bool {
        self.0
    }
}

/// A Condition Variable
///
/// Condition variables represent the ability to block a thread such that it
/// consumes no CPU time while waiting for an event to occur. Condition
/// variables are typically associated with a boolean predicate (a condition)
/// and a mutex. The predicate is always verified inside of the mutex before
/// determining that thread must block.
///
/// # Differences from the standard library `Condvar`
///
/// - No spurious wakeups: A wait will only return a non-timeout result if it
///   was woken up by `notify_one` or `notify_all`.
/// - Only requires 1 byte of space, whereas the standard library boxes the
///   `Condvar` due to platform limitations.
/// - Can be statically constructed (requires the `const_fn` nightly feature).
/// - Does not require any drop glue when dropped.
/// - Inline fast path for the uncontended case.
///
/// # Examples
///
/// ```
/// use parking_lot::{Mutex, Condvar};
/// use std::sync::Arc;
/// use std::thread;
///
/// let pair = Arc::new((Mutex::new(false), Condvar::new()));
/// let pair2 = pair.clone();
///
/// // Inside of our lock, spawn a new thread, and then wait for it to start
/// thread::spawn(move|| {
///     let &(ref lock, ref cvar) = &*pair2;
///     let mut started = lock.lock();
///     *started = true;
///     cvar.notify_one();
/// });
///
/// // wait for the thread to start up
/// let &(ref lock, ref cvar) = &*pair;
/// let mut started = lock.lock();
/// while !*started {
///     cvar.wait(&mut started);
/// }
/// ```
pub struct Condvar {
    state: AtomicBool,
}

impl Condvar {
    /// Creates a new condition variable which is ready to be waited on and
    /// notified.
    #[cfg(feature = "nightly")]
    #[inline]
    pub const fn new() -> Condvar {
        Condvar { state: AtomicBool::new(false) }
    }

    /// Creates a new condition variable which is ready to be waited on and
    /// notified.
    #[cfg(not(feature = "nightly"))]
    #[inline]
    pub fn new() -> Condvar {
        Condvar { state: AtomicBool::new(false) }
    }

    /// Wakes up one blocked thread on this condvar.
    ///
    /// If there is a blocked thread on this condition variable, then it will
    /// be woken up from its call to `wait` or `wait_timeout`. Calls to
    /// `notify_one` are not buffered in any way.
    ///
    /// To wake up all threads, see `notify_all()`.
    #[inline]
    pub fn notify_one(&self) {
        // Nothing to do if there are no waiting threads
        if !self.state.load(Ordering::Relaxed) {
            return;
        }

        unsafe {
            // Unpark one thread
            let addr = self as *const _ as usize;
            let callback = &mut |result| {
                // Clear our state if there are no more waiting threads
                if result != UnparkResult::UnparkedNotLast {
                    self.state.store(false, Ordering::Relaxed);
                }
            };
            parking_lot::unpark_one(addr, callback);
        }
    }

    /// Wakes up all blocked threads on this condvar.
    ///
    /// This method will ensure that any current waiters on the condition
    /// variable are awoken. Calls to `notify_all()` are not buffered in any
    /// way.
    ///
    /// To wake up only one thread, see `notify_one()`.
    #[inline]
    pub fn notify_all(&self) {
        // Nothing to do if there are no waiting threads
        if !self.state.load(Ordering::Relaxed) {
            return;
        }

        // Clear our state since we are going to wake all threads up anyways
        self.state.store(false, Ordering::Relaxed);

        unsafe {
            // Unpark all threads
            let addr = self as *const _ as usize;
            parking_lot::unpark_all(addr);
        }
    }

    /// Blocks the current thread until this condition variable receives a
    /// notification.
    ///
    /// This function will atomically unlock the mutex specified (represented by
    /// `mutex_guard`) and block the current thread. This means that any calls
    /// to `notify_*()` which happen logically after the mutex is unlocked are
    /// candidates to wake this thread up. When this function call returns, the
    /// lock specified will have been re-acquired.
    #[inline]
    pub fn wait<T: ?Sized>(&self, guard: &mut MutexGuard<T>) {
        unsafe {
            let addr = self as *const _ as usize;
            let validate = &mut || {
                // This is done while locked to avoid races with notify_one
                self.state.store(true, Ordering::Relaxed);
                true
            };
            let before_sleep = &mut || {
                // Unlock the mutex before sleeping...
                guard_lock(guard).unlock();
            };
            parking_lot::park(addr, validate, before_sleep, None);

            // ... and re-lock it once we are done sleeping
            guard_lock(guard).lock();
        }
    }

    /// Waits on this condition variable for a notification, timing out after
    /// the specified time instant.
    ///
    /// The semantics of this function are equivalent to `wait()` except that
    /// the thread will be blocked roughly until `timeout` is reached. This
    /// method should not be used for precise timing due to anomalies such as
    /// preemption or platform differences that may not cause the maximum
    /// amount of time waited to be precisely `timeout`.
    ///
    /// The returned `WaitTimeoutResult` value indicates if the timeout is
    /// known to have elapsed.
    ///
    /// Like `wait`, the lock specified will be re-acquired when this function
    /// returns, regardless of whether the timeout elapsed or not.
    #[inline]
    pub fn wait_until<T: ?Sized>(&self,
                                 guard: &mut MutexGuard<T>,
                                 timeout: Instant)
                                 -> WaitTimeoutResult {
        unsafe {
            let result;
            if timeout <= Instant::now() {
                // If the timeout is in the past, we still need to release and
                // re-acquire the mutex.
                guard_lock(guard).unlock();
                result = false;
            } else {
                let addr = self as *const _ as usize;
                let validate = &mut || {
                    // This is done while locked to avoid races with notify_one
                    self.state.store(true, Ordering::Relaxed);
                    true
                };
                let before_sleep = &mut || {
                    // Unlock the mutex before sleeping...
                    guard_lock(guard).unlock();
                };
                result = parking_lot::park(addr, validate, before_sleep, Some(timeout));
            }

            // ... and re-lock it once we are done sleeping
            guard_lock(guard).lock();

            WaitTimeoutResult(!result)
        }
    }

    /// Waits on this condition variable for a notification, timing out after a
    /// specified duration.
    ///
    /// The semantics of this function are equivalent to `wait()` except that
    /// the thread will be blocked for roughly no longer than `timeout`. This
    /// method should not be used for precise timing due to anomalies such as
    /// preemption or platform differences that may not cause the maximum
    /// amount of time waited to be precisely `timeout`.
    ///
    /// The returned `WaitTimeoutResult` value indicates if the timeout is
    /// known to have elapsed.
    ///
    /// Like `wait`, the lock specified will be re-acquired when this function
    /// returns, regardless of whether the timeout elapsed or not.
    #[inline]
    pub fn wait_for<T: ?Sized>(&self,
                               guard: &mut MutexGuard<T>,
                               timeout: Duration)
                               -> WaitTimeoutResult {
        self.wait_until(guard, Instant::now() + timeout)
    }
}

impl Default for Condvar {
    #[inline]
    fn default() -> Condvar {
        Condvar::new()
    }
}

#[cfg(test)]
mod tests {
    use std::sync::mpsc::channel;
    use std::sync::Arc;
    use std::thread;
    use std::time::{Duration, Instant};
    use {Condvar, Mutex};

    #[test]
    fn smoke() {
        let c = Condvar::new();
        c.notify_one();
        c.notify_all();
    }

    #[test]
    fn notify_one() {
        lazy_static! {
            static ref C: Condvar = Condvar::new();
            static ref M: Mutex<()> = Mutex::new(());
        }

        let mut g = M.lock();
        let _t = thread::spawn(move || {
            let _g = M.lock();
            C.notify_one();
        });
        C.wait(&mut g);
    }

    #[test]
    fn notify_all() {
        const N: usize = 10;

        let data = Arc::new((Mutex::new(0), Condvar::new()));
        let (tx, rx) = channel();
        for _ in 0..N {
            let data = data.clone();
            let tx = tx.clone();
            thread::spawn(move || {
                let &(ref lock, ref cond) = &*data;
                let mut cnt = lock.lock();
                *cnt += 1;
                if *cnt == N {
                    tx.send(()).unwrap();
                }
                while *cnt != 0 {
                    cond.wait(&mut cnt);
                }
                tx.send(()).unwrap();
            });
        }
        drop(tx);

        let &(ref lock, ref cond) = &*data;
        rx.recv().unwrap();
        let mut cnt = lock.lock();
        *cnt = 0;
        cond.notify_all();
        drop(cnt);

        for _ in 0..N {
            rx.recv().unwrap();
        }
    }

    #[test]
    fn wait_for() {
        lazy_static! {
            static ref C: Condvar = Condvar::new();
            static ref M: Mutex<()> = Mutex::new(());
        }

        let mut g = M.lock();
        let no_timeout = C.wait_for(&mut g, Duration::from_millis(1));
        assert!(no_timeout.timed_out());
        let _t = thread::spawn(move || {
            let _g = M.lock();
            C.notify_one();
        });
        let timeout_res = C.wait_for(&mut g, Duration::from_millis(u32::max_value() as u64));
        assert!(!timeout_res.timed_out());
        drop(g);
    }

    #[test]
    fn wait_until() {
        lazy_static! {
            static ref C: Condvar = Condvar::new();
            static ref M: Mutex<()> = Mutex::new(());
        }

        let mut g = M.lock();
        let no_timeout = C.wait_until(&mut g, Instant::now() + Duration::from_millis(1));
        assert!(no_timeout.timed_out());
        let _t = thread::spawn(move || {
            let _g = M.lock();
            C.notify_one();
        });
        let timeout_res = C.wait_until(&mut g,
                                       Instant::now() +
                                       Duration::from_millis(u32::max_value() as u64));
        assert!(!timeout_res.timed_out());
        drop(g);
    }
}