1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
use core::ops::{Add, Mul, RangeInclusive, Sub};

#[cfg(any(feature = "std", feature = "libm"))]
use num_traits::Float;
use num_traits::{float::FloatCore, Num, One, Zero};

use crate::{constant, fun, id};

/// A `Fun` represents anything that maps from some type `T` to another
/// type `V`.
///
/// `T` usually stands for time and `V` for some value that is parameterized by
/// time.
///
/// ## Implementation details
/// The only reason that we define this trait instead of just using `Fn(T) -> V`
/// is so that the library works in stable rust. Having this type allows us to
/// implement e.g. `std::ops::Add` for [`Anim<F>`](struct.Anim.html) where
/// `F: Fun`. Without this trait, it becomes difficult (impossible?) to provide
/// a name for `Add::Output`, unless you have the unstable feature
/// `type_alias_impl_trait` or `fn_traits`.
///
/// In contrast to `std::ops::FnOnce`, both input _and_ output are associated
/// types of `Fun`. The main reason is that this makes types smaller for the
/// user of the library. I have not observed any downsides to this yet.
pub trait Fun {
    /// The function's input type. Usually time.
    type T;

    /// The function's output type.
    type V;

    /// Evaluate the function at time `t`.
    fn eval(&self, t: Self::T) -> Self::V;
}

impl<'a, F> Fun for &'a F
where
    F: Fun,
{
    type T = F::T;
    type V = F::V;

    fn eval(&self, t: Self::T) -> Self::V {
        (*self).eval(t)
    }
}

/// `Anim` is the main type provided by pareen. It is a wrapper around any type
/// implementing [`Fun`](trait.Fun.html).
///
/// `Anim` provides methods that transform or compose animations, allowing
/// complex animations to be created out of simple pieces.
#[derive(Clone, Debug)]
pub struct Anim<F>(pub F);

impl<F> Anim<F>
where
    F: Fun,
{
    /// Evaluate the animation at time `t`.
    pub fn eval(&self, t: F::T) -> F::V {
        self.0.eval(t)
    }

    /// Transform an animation so that it applies a given function to its
    /// values.
    ///
    /// # Example
    ///
    /// Turn `(2.0 * t)` into `(2.0 * t).sqrt() + 2.0 * t`:
    /// ```
    /// # use assert_approx_eq::assert_approx_eq;
    /// let anim = pareen::prop(2.0f32).map(|value| value.sqrt() + value);
    ///
    /// assert_approx_eq!(anim.eval(1.0), 2.0f32.sqrt() + 2.0);
    /// ```
    pub fn map<W>(self, f: impl Fn(F::V) -> W) -> Anim<impl Fun<T = F::T, V = W>> {
        self.map_anim(fun(f))
    }

    /// Transform an animation so that it modifies time according to the given
    /// function before evaluating the animation.
    ///
    /// # Example
    /// Run an animation two times slower:
    /// ```
    /// let anim = pareen::cubic(&[1.0, 1.0, 1.0, 1.0]);
    /// let slower_anim = anim.map_time(|t: f32| t / 2.0);
    /// ```
    pub fn map_time<S>(self, f: impl Fn(S) -> F::T) -> Anim<impl Fun<T = S, V = F::V>> {
        fun(f).map_anim(self)
    }

    /// Converts from `Anim<F>` to `Anim<&F>`.
    pub fn as_ref(&self) -> Anim<&F> {
        Anim(&self.0)
    }

    pub fn map_anim<W, G, A>(self, anim: A) -> Anim<impl Fun<T = F::T, V = W>>
    where
        G: Fun<T = F::V, V = W>,
        A: Into<Anim<G>>,
    {
        // Nested closures result in exponential compilation time increase, and we
        // expect map_anim to be used often. Thus, we avoid using `pareen::fun` here.
        // For reference: https://github.com/rust-lang/rust/issues/72408
        Anim(MapClosure(self.0, anim.into().0))
    }

    pub fn map_time_anim<S, G, A>(self, anim: A) -> Anim<impl Fun<T = S, V = F::V>>
    where
        G: Fun<T = S, V = F::T>,
        A: Into<Anim<G>>,
    {
        anim.into().map_anim(self)
    }

    pub fn into_fn(self) -> impl Fn(F::T) -> F::V {
        move |t| self.eval(t)
    }
}

impl<F> Anim<F>
where
    F: Fun,
    F::T: Clone + Mul<Output = F::T>,
{
    pub fn scale_time(self, t_scale: F::T) -> Anim<impl Fun<T = F::T, V = F::V>> {
        self.map_time(move |t| t * t_scale.clone())
    }
}

impl<F> Fun for Option<F>
where
    F: Fun,
{
    type T = F::T;
    type V = Option<F::V>;

    fn eval(&self, t: F::T) -> Option<F::V> {
        self.as_ref().map(|f| f.eval(t))
    }
}

#[doc(hidden)]
#[derive(Debug, Clone)]
pub struct MapClosure<F, G>(F, G);

impl<F, G> Fun for MapClosure<F, G>
where
    F: Fun,
    G: Fun<T = F::V>,
{
    type T = F::T;
    type V = G::V;

    fn eval(&self, t: F::T) -> G::V {
        self.1.eval(self.0.eval(t))
    }
}

impl<T, X, Y, F> Anim<F>
where
    F: Fun<T = T, V = (X, Y)>,
{
    pub fn fst(self) -> Anim<impl Fun<T = F::T, V = X>> {
        self.map(|(x, _)| x)
    }

    pub fn snd(self) -> Anim<impl Fun<T = F::T, V = Y>> {
        self.map(|(_, y)| y)
    }
}

impl<F> Anim<F>
where
    F: Fun,
    F::T: Clone,
{
    /// Combine two animations into one, yielding an animation having pairs as
    /// the values.
    pub fn zip<G, A>(self, other: A) -> Anim<impl Fun<T = F::T, V = (F::V, G::V)>>
    where
        G: Fun<T = F::T>,
        A: Into<Anim<G>>,
    {
        // Nested closures result in exponential compilation time increase, and we
        // expect zip to be used frequently. Thus, we avoid using `pareen::fun` here.
        // For reference: https://github.com/rust-lang/rust/issues/72408
        Anim(ZipClosure(self.0, other.into().0))
    }

    pub fn bind<W, G>(self, f: impl Fn(F::V) -> Anim<G>) -> Anim<impl Fun<T = F::T, V = W>>
    where
        G: Fun<T = F::T, V = W>,
    {
        fun(move |t: F::T| f(self.eval(t.clone())).eval(t))
    }
}

impl<'a, T, V, F> Anim<F>
where
    V: 'a + Copy,
    F: Fun<T = T, V = &'a V> + 'a,
{
    pub fn copied(self) -> Anim<impl Fun<T = T, V = V> + 'a> {
        self.map(|x| *x)
    }
}

impl<'a, T, V, F> Anim<F>
where
    V: 'a + Clone,
    F: Fun<T = T, V = &'a V> + 'a,
{
    pub fn cloned(self) -> Anim<impl Fun<T = T, V = V> + 'a> {
        self.map(|x| x.clone())
    }
}

#[doc(hidden)]
#[derive(Debug, Clone)]
pub struct ZipClosure<F, G>(F, G);

impl<F, G> Fun for ZipClosure<F, G>
where
    F: Fun,
    F::T: Clone,
    G: Fun<T = F::T>,
{
    type T = F::T;
    type V = (F::V, G::V);

    fn eval(&self, t: F::T) -> Self::V {
        (self.0.eval(t.clone()), self.1.eval(t))
    }
}

impl<F> Anim<F>
where
    F: Fun,
    F::T: Copy + Sub<Output = F::T>,
{
    /// Shift an animation in time, so that it is moved to the right by `t_delay`.
    pub fn shift_time(self, t_delay: F::T) -> Anim<impl Fun<T = F::T, V = F::V>> {
        (id::<F::T, F::T>() - t_delay).map_anim(self)
    }
}

impl<F> Anim<F>
where
    F: Fun,
    F::T: Clone + PartialOrd,
{
    /// Concatenate `self` with another animation in time, using `self` until
    /// time `self_end` (non-inclusive), and then switching to `next`.
    ///
    /// # Examples
    /// Switch from one constant value to another:
    /// ```
    /// # use assert_approx_eq::assert_approx_eq;
    /// let anim = pareen::constant(1.0f32).switch(0.5f32, 2.0);
    ///
    /// assert_approx_eq!(anim.eval(0.0), 1.0);
    /// assert_approx_eq!(anim.eval(0.5), 2.0);
    /// assert_approx_eq!(anim.eval(42.0), 2.0);
    /// ```
    ///
    /// Piecewise combinations of functions:
    /// ```
    /// let cubic_1 = pareen::cubic(&[4.4034, 0.0, -4.5455e-2, 0.0]);
    /// let cubic_2 = pareen::cubic(&[-1.2642e1, 2.0455e1, -8.1364, 1.0909]);
    /// let cubic_3 = pareen::cubic(&[1.6477e1, -4.9432e1, 4.7773e1, -1.3818e1]);
    ///
    /// // Use cubic_1 for [0.0, 0.4), cubic_2 for [0.4, 0.8) and
    /// // cubic_3 for [0.8, ..).
    /// let anim = cubic_1.switch(0.4, cubic_2).switch(0.8, cubic_3);
    /// ```
    pub fn switch<G, A>(self, self_end: F::T, next: A) -> Anim<impl Fun<T = F::T, V = F::V>>
    where
        G: Fun<T = F::T, V = F::V>,
        A: Into<Anim<G>>,
    {
        // Nested closures result in exponential compilation time increase, and we
        // expect switch to be used frequently. Thus, we avoid using `pareen::fun` here.
        // For reference: https://github.com/rust-lang/rust/issues/72408
        cond(switch_cond(self_end), self, next)
    }

    /// Play `self` in time range `range`, and `surround` outside of the time range.
    ///
    /// # Examples
    /// ```
    /// # use assert_approx_eq::assert_approx_eq;
    /// let anim = pareen::constant(10.0f32).surround(2.0..=5.0, 20.0);
    ///
    /// assert_approx_eq!(anim.eval(0.0), 20.0);
    /// assert_approx_eq!(anim.eval(2.0), 10.0);
    /// assert_approx_eq!(anim.eval(4.0), 10.0);
    /// assert_approx_eq!(anim.eval(5.0), 10.0);
    /// assert_approx_eq!(anim.eval(6.0), 20.0);
    /// ```
    pub fn surround<G, A>(
        self,
        range: RangeInclusive<F::T>,
        surround: A,
    ) -> Anim<impl Fun<T = F::T, V = F::V>>
    where
        G: Fun<T = F::T, V = F::V>,
        A: Into<Anim<G>>,
    {
        // Nested closures result in exponential compilation time increase, and we
        // expect surround to be used frequently. Thus, we avoid using `pareen::fun` here.
        // For reference: https://github.com/rust-lang/rust/issues/72408
        cond(surround_cond(range), self, surround)
    }
}

fn switch_cond<T: PartialOrd>(self_end: T) -> Anim<impl Fun<T = T, V = bool>> {
    fun(move |t| t < self_end)
}

fn surround_cond<T: PartialOrd>(range: RangeInclusive<T>) -> Anim<impl Fun<T = T, V = bool>> {
    fun(move |t| range.contains(&t))
}

impl<F> Anim<F>
where
    F: Fun,
    F::T: Clone + PartialOrd,
    F::V: Clone,
{
    /// Play `self` until time `self_end`, then always return the value of
    /// `self` at time `self_end`.
    pub fn hold(self, self_end: F::T) -> Anim<impl Fun<T = F::T, V = F::V>> {
        let end_value = self.eval(self_end.clone());

        self.switch(self_end, constant(end_value))
    }
}

impl<F> Anim<F>
where
    F: Fun,
    F::T: Copy + PartialOrd + Sub<Output = F::T>,
{
    /// Play two animations in sequence, first playing `self` until time
    /// `self_end` (non-inclusive), and then switching to `next`. Note that
    /// `next` will see time starting at zero once it plays.
    ///
    /// # Example
    /// Stay at value `5.0` for ten seconds, then increase value proportionally:
    /// ```
    /// # use assert_approx_eq::assert_approx_eq;
    /// let anim_1 = pareen::constant(5.0f32);
    /// let anim_2 = pareen::prop(2.0f32) + 5.0;
    /// let anim = anim_1.seq(10.0, anim_2);
    ///
    /// assert_approx_eq!(anim.eval(0.0), 5.0);
    /// assert_approx_eq!(anim.eval(10.0), 5.0);
    /// assert_approx_eq!(anim.eval(11.0), 7.0);
    /// ```
    pub fn seq<G, A>(self, self_end: F::T, next: A) -> Anim<impl Fun<T = F::T, V = F::V>>
    where
        G: Fun<T = F::T, V = F::V>,
        A: Into<Anim<G>>,
    {
        self.switch(self_end.clone(), next.into().shift_time(self_end))
    }

    pub fn seq_continue<G, A, H>(
        self,
        self_end: F::T,
        next_fn: H,
    ) -> Anim<impl Fun<T = F::T, V = F::V>>
    where
        G: Fun<T = F::T, V = F::V>,
        A: Into<Anim<G>>,
        H: Fn(F::V) -> A,
    {
        let next = next_fn(self.eval(self_end.clone())).into();

        self.seq(self_end, next)
    }
}

impl<F> Anim<F>
where
    F: Fun,
    F::T: Clone + Sub<Output = F::T>,
{
    /// Play an animation backwards, starting at time `end`.
    ///
    /// # Example
    ///
    /// ```
    /// # use assert_approx_eq::assert_approx_eq;
    /// let anim = pareen::prop(2.0f32).backwards(1.0);
    ///
    /// assert_approx_eq!(anim.eval(0.0f32), 2.0);
    /// assert_approx_eq!(anim.eval(1.0f32), 0.0);
    /// ```
    pub fn backwards(self, end: F::T) -> Anim<impl Fun<T = F::T, V = F::V>> {
        (constant(end) - id()).map_anim(self)
    }
}

impl<F> Anim<F>
where
    F: Fun,
    F::T: Copy,
    F::V: Copy + Num,
{
    /// Given animation values in `[0.0 .. 1.0]`, this function transforms the
    /// values so that they are in `[min .. max]`.
    ///
    /// # Example
    /// ```
    /// # use assert_approx_eq::assert_approx_eq;
    /// let min = -3.0f32;
    /// let max = 10.0;
    /// let anim = pareen::id().scale_min_max(min, max);
    ///
    /// assert_approx_eq!(anim.eval(0.0f32), min);
    /// assert_approx_eq!(anim.eval(1.0f32), max);
    /// ```
    pub fn scale_min_max(self, min: F::V, max: F::V) -> Anim<impl Fun<T = F::T, V = F::V>> {
        self * (max.clone() - min) + min
    }
}

#[cfg(any(feature = "std", feature = "libm"))]
impl<F> Anim<F>
where
    F: Fun,
    F::V: Float,
{
    /// Apply `Float::sin` to the animation values.
    pub fn sin(self) -> Anim<impl Fun<T = F::T, V = F::V>> {
        self.map(Float::sin)
    }

    /// Apply `Float::cos` to the animation values.
    pub fn cos(self) -> Anim<impl Fun<T = F::T, V = F::V>> {
        self.map(Float::cos)
    }

    /// Apply `Float::powf` to the animation values.
    pub fn powf(self, e: F::V) -> Anim<impl Fun<T = F::T, V = F::V>> {
        self.map(move |v| v.powf(e))
    }
}

impl<F> Anim<F>
where
    F: Fun,
    F::V: FloatCore,
{
    /// Apply `FloatCore::abs` to the animation values.
    pub fn abs(self) -> Anim<impl Fun<T = F::T, V = F::V>> {
        self.map(FloatCore::abs)
    }

    /// Apply `FloatCore::powi` to the animation values.
    pub fn powi(self, n: i32) -> Anim<impl Fun<T = F::T, V = F::V>> {
        self.map(move |v| v.powi(n))
    }
}

impl<F> Anim<F>
where
    F: Fun,
    F::T: Copy + FloatCore,
{
    /// Transform an animation in time, so that its time `[0 .. 1]` is shifted
    /// and scaled into the given `range`.
    ///
    /// In other words, this function can both delay and speed up or slow down a
    /// given animation.
    ///
    /// # Example
    ///
    /// Go from zero to 2π in half a second:
    /// ```
    /// # use assert_approx_eq::assert_approx_eq;
    /// // From zero to 2π in one second
    /// let angle = pareen::circle::<f32, f32>();
    ///
    /// // From zero to 2π in time range [0.5 .. 1.0]
    /// let anim = angle.squeeze(0.5..=1.0);
    ///
    /// assert_approx_eq!(anim.eval(0.5), 0.0);
    /// assert_approx_eq!(anim.eval(1.0), std::f32::consts::PI * 2.0);
    /// ```
    pub fn squeeze(self, range: RangeInclusive<F::T>) -> Anim<impl Fun<T = F::T, V = F::V>> {
        let time_shift = *range.start();
        let time_scale = F::T::one() / (*range.end() - *range.start());

        self.map_time(move |t| (t - time_shift) * time_scale)
    }

    /// Transform an animation in time, so that its time `[0 .. 1]` is shifted
    /// and scaled into the given `range`.
    ///
    /// In other words, this function can both delay and speed up or slow down a
    /// given animation.
    ///
    /// For time outside of the given `range`, the `surround` animation is used
    /// instead.
    ///
    /// # Example
    ///
    /// Go from zero to 2π in half a second:
    /// ```
    /// # use assert_approx_eq::assert_approx_eq;
    /// // From zero to 2π in one second
    /// let angle = pareen::circle();
    ///
    /// // From zero to 2π in time range [0.5 .. 1.0]
    /// let anim = angle.squeeze_and_surround(0.5..=1.0, 42.0);
    ///
    /// assert_approx_eq!(anim.eval(0.0f32), 42.0f32);
    /// assert_approx_eq!(anim.eval(0.5), 0.0);
    /// assert_approx_eq!(anim.eval(1.0), std::f32::consts::PI * 2.0);
    /// assert_approx_eq!(anim.eval(1.1), 42.0);
    /// ```
    pub fn squeeze_and_surround<G, A>(
        self,
        range: RangeInclusive<F::T>,
        surround: A,
    ) -> Anim<impl Fun<T = F::T, V = F::V>>
    where
        G: Fun<T = F::T, V = F::V>,
        A: Into<Anim<G>>,
    {
        self.squeeze(range.clone()).surround(range, surround)
    }

    /// Play two animations in sequence, first playing `self` until time
    /// `self_end` (non-inclusive), and then switching to `next`. The animations
    /// are squeezed in time so that they fit into `[0 .. 1]` together.
    ///
    /// `self` is played in time `[0 .. self_end)`, and then `next` is played
    /// in time [self_end .. 1]`.
    pub fn seq_squeeze<G, A>(self, self_end: F::T, next: A) -> Anim<impl Fun<T = F::T, V = F::V>>
    where
        G: Fun<T = F::T, V = F::V>,
        A: Into<Anim<G>>,
    {
        let first = self.squeeze(Zero::zero()..=self_end);
        let second = next.into().squeeze(self_end..=One::one());

        first.switch(self_end, second)
    }

    /// Repeat an animation forever.
    pub fn repeat(self, period: F::T) -> Anim<impl Fun<T = F::T, V = F::V>> {
        self.map_time(move |t: F::T| (t * period.recip()).fract() * period)
    }
}

impl<W, F> Anim<F>
where
    F: Fun,
    F::T: Copy + Mul<W, Output = W>,
    F::V: Copy + Add<W, Output = F::V> + Sub<Output = W>,
{
    /// Linearly interpolate between two animations, starting at time zero and
    /// finishing at time one.
    ///
    /// # Examples
    ///
    /// Linearly interpolate between two constant values:
    /// ```
    /// # use assert_approx_eq::assert_approx_eq;
    /// let anim = pareen::constant(5.0f32).lerp(10.0);
    ///
    /// assert_approx_eq!(anim.eval(0.0f32), 5.0);
    /// assert_approx_eq!(anim.eval(0.5), 7.5);
    /// assert_approx_eq!(anim.eval(1.0), 10.0);
    /// assert_approx_eq!(anim.eval(2.0), 15.0);
    /// ```
    #[cfg_attr(any(feature = "std", feature = "libm"), doc = r##"
It is also possible to linearly interpolate between two non-constant
animations:
```
let anim = pareen::circle().sin().lerp(pareen::circle().cos());
let value: f32 = anim.eval(0.5f32);
```
    "##)]
    pub fn lerp<G, A>(self, other: A) -> Anim<impl Fun<T = F::T, V = F::V>>
    where
        G: Fun<T = F::T, V = F::V>,
        A: Into<Anim<G>>,
    {
        let other = other.into();

        fun(move |t| {
            let a = self.eval(t);
            let b = other.eval(t);

            let delta = b - a;

            a + t * delta
        })
    }
}

impl<V, F> Anim<F>
where
    F: Fun<V = Option<V>>,
    F::T: Clone,
{
    /// Unwrap an animation of optional values.
    ///
    /// At any time, returns the animation value if it is not `None`, or the
    /// given `default` value otherwise.
    ///
    /// # Examples
    ///
    /// ```
    /// let anim1 = pareen::constant(Some(42)).unwrap_or(-1);
    /// assert_eq!(anim1.eval(2), 42);
    /// assert_eq!(anim1.eval(3), 42);
    /// ```
    ///
    /// ```
    /// let cond = pareen::fun(|t| t % 2 == 0);
    /// let anim1 = pareen::cond(cond, Some(42), None).unwrap_or(-1);
    /// assert_eq!(anim1.eval(2), 42);
    /// assert_eq!(anim1.eval(3), -1);
    /// ```
    pub fn unwrap_or<G, A>(self, default: A) -> Anim<impl Fun<T = F::T, V = V>>
    where
        G: Fun<T = F::T, V = V>,
        A: Into<Anim<G>>,
    {
        self.zip(default.into())
            .map(|(v, default)| v.unwrap_or(default))
    }

    /// Applies a function to the contained value (if any), or returns the
    /// provided default (if not).
    ///
    /// Note that the function `f` itself returns an animation.
    ///
    /// # Example
    ///
    /// Animate a player's position offset if it is moving:
    /// ```
    /// # use assert_approx_eq::assert_approx_eq;
    /// fn my_offset_anim(
    ///     move_dir: Option<f32>,
    /// ) -> pareen::Anim<impl pareen::Fun<T = f32, V = f32>> {
    ///     let move_speed = 2.0f32;
    ///
    ///     pareen::constant(move_dir).map_or(
    ///         0.0,
    ///         move |move_dir| pareen::prop(move_dir) * move_speed,
    ///     )
    /// }
    ///
    /// let move_anim = my_offset_anim(Some(1.0));
    /// let stay_anim = my_offset_anim(None);
    ///
    /// assert_approx_eq!(move_anim.eval(0.5), 1.0);
    /// assert_approx_eq!(stay_anim.eval(0.5), 0.0);
    /// ```
    pub fn map_or<W, G, H, A>(
        self,
        default: A,
        f: impl Fn(V) -> Anim<H>,
    ) -> Anim<impl Fun<T = F::T, V = W>>
    where
        G: Fun<T = F::T, V = W>,
        H: Fun<T = F::T, V = W>,
        A: Into<Anim<G>>,
    {
        let default = default.into();

        //self.bind(move |v| v.map_or(default, f))

        fun(move |t: F::T| {
            self.eval(t.clone())
                .map_or_else(|| default.eval(t.clone()), |v| f(v).eval(t.clone()))
        })
    }
}

/// Return the value of one of two animations depending on a condition.
///
/// This allows returning animations of different types conditionally.
///
/// Note that the condition `cond` may either be a value `true` and `false`, or
/// it may itself be a dynamic animation of type `bool`.
///
/// For dynamic conditions, in many cases it suffices to use either
/// [`Anim::switch`](struct.Anim.html#method.switch) or
/// [`Anim::seq`](struct.Anim.html#method.seq) instead of this function.
///
/// # Examples
/// ## Constant conditions
///
/// The following example does _not_ compile, because the branches have
/// different types:
/// ```compile_fail
/// let cond = true;
/// let anim = if cond { pareen::constant(1) } else { pareen::id() };
/// ```
///
/// However, this does compile:
/// ```
/// let cond = true;
/// let anim = pareen::cond(cond, 1, pareen::id());
///
/// assert_eq!(anim.eval(2), 1);
/// ```
///
/// ## Dynamic conditions
///
/// ```
/// let cond = pareen::fun(|t| t * t <= 4);
/// let anim_1 = 1;
/// let anim_2 = pareen::id();
/// let anim = pareen::cond(cond, anim_1, anim_2);
///
/// assert_eq!(anim.eval(1), 1); // 1 * 1 <= 4
/// assert_eq!(anim.eval(2), 1); // 2 * 2 <= 4
/// assert_eq!(anim.eval(3), 3); // 3 * 3 > 4
/// ```
pub fn cond<F, G, H, Cond, A, B>(cond: Cond, a: A, b: B) -> Anim<impl Fun<T = F::T, V = G::V>>
where
    F::T: Clone,
    F: Fun<V = bool>,
    G: Fun<T = F::T>,
    H: Fun<T = F::T, V = G::V>,
    Cond: Into<Anim<F>>,
    A: Into<Anim<G>>,
    B: Into<Anim<H>>,
{
    // Nested closures result in exponential compilation time increase, and we
    // expect cond to be used often. Thus, we avoid using `pareen::fun` here.
    // For reference: https://github.com/rust-lang/rust/issues/72408
    Anim(CondClosure(cond.into().0, a.into().0, b.into().0))
}

#[doc(hidden)]
#[derive(Debug, Clone)]
pub struct CondClosure<F, G, H>(F, G, H);

impl<F, G, H> Fun for CondClosure<F, G, H>
where
    F::T: Clone,
    F: Fun<V = bool>,
    G: Fun<T = F::T>,
    H: Fun<T = F::T, V = G::V>,
{
    type T = F::T;
    type V = G::V;

    fn eval(&self, t: F::T) -> G::V {
        if self.0.eval(t.clone()) {
            self.1.eval(t)
        } else {
            self.2.eval(t)
        }
    }
}

/// Linearly interpolate between two animations, starting at time zero and
/// finishing at time one.
///
/// This is a wrapper around [`Anim::lerp`](struct.Anim.html#method.lerp) for
/// convenience, allowing automatic conversion into [`Anim`](struct.Anim.html)
/// for both `a` and `b`.
///
/// # Example
///
/// Linearly interpolate between two constant values:
///
/// ```
/// # use assert_approx_eq::assert_approx_eq;
/// let anim = pareen::lerp(5.0f32, 10.0);
///
/// assert_approx_eq!(anim.eval(0.0f32), 5.0);
/// assert_approx_eq!(anim.eval(0.5), 7.5);
/// assert_approx_eq!(anim.eval(1.0), 10.0);
/// assert_approx_eq!(anim.eval(2.0), 15.0);
/// ```
pub fn lerp<T, V, W, F, G, A, B>(a: A, b: B) -> Anim<impl Fun<T = T, V = V>>
where
    T: Copy + Mul<W, Output = W>,
    V: Copy + Add<W, Output = V> + Sub<Output = W>,
    F: Fun<T = T, V = V>,
    G: Fun<T = T, V = V>,
    A: Into<Anim<F>>,
    B: Into<Anim<G>>,
{
    a.into().lerp(b.into())
}

/// Build an animation that depends on matching some expression.
///
/// Importantly, this macro allows returning animations of a different type in
/// each match arm, which is not possible with a normal `match` expression.
///
/// # Example
/// ```
/// # use assert_approx_eq::assert_approx_eq;
/// enum MyPlayerState {
///     Standing,
///     Running,
///     Jumping,
/// }
///
/// fn my_anim(state: MyPlayerState) -> pareen::Anim<impl pareen::Fun<T = f64, V = f64>> {
///     pareen::anim_match!(state;
///         MyPlayerState::Standing => pareen::constant(0.0),
///         MyPlayerState::Running => pareen::prop(1.0),
///         MyPlayerState::Jumping => pareen::id().powi(2),
///     )
/// }
///
/// assert_approx_eq!(my_anim(MyPlayerState::Standing).eval(2.0), 0.0);
/// assert_approx_eq!(my_anim(MyPlayerState::Running).eval(2.0), 2.0);
/// assert_approx_eq!(my_anim(MyPlayerState::Jumping).eval(2.0), 4.0);
/// ```
#[macro_export]
macro_rules! anim_match {
    (
        $expr:expr;
        $($pat:pat => $value:expr $(,)?)*
    ) => {
        $crate::fun(move |t| match $expr {
            $(
                $pat => ($crate::Anim::from($value)).eval(t),
            )*
        })
    }
}