1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
//! Translate from IR to the lowest structures.
//! Should this module have another name? The parallel to rustc trans will be lost on some people,
//! and is unclear even to me.

#![allow(non_snake_case)]

use std::iter;
use std::collections::HashSet;
use std::collections::HashMap;
use std::collections::BTreeMap;
use std::fmt::Write;
use std::u32;
use std::mem;

use quote::ToTokens;

use cfg::symbol::Symbol;
use cfg::ContextFreeRef;
// use cfg::remap::Mapping;
use cfg::rule::GrammarRule;
use cfg::rule::container::RuleContainer;
use cfg::symbol::SymbolBitSet;
// use gearley::grammar::InternalGrammar;

// use middle::{Ir, Ty, AutoTy};
// use middle::action::{Action, ActionExpr};
use middle::ir::Ir;
use output::instruction::{Instruction, InstructionList, translate_ir};

const CHAR_CLASSIFIER_MACRO_NAME: &'static str = "char_classifier";

pub struct IrTranslator {
    // Intermediate representation (higher-level).
    pub ir: Ir,

    // temporary maps
    // pub type_map: BTreeMap<Symbol, ComputedType>,
    // pub variant_names: BTreeMap<Symbol, rs::Term>,

    // Compile-time assertions.
    // assert_type_equality: Vec<(rs::TokenStream, rs::TokenStream)>,
    // Terminal symbols.
    pub terminals: Vec<Symbol>,
    // Evaluated node variants with their inner types.
    // pub variant_map: Vec<(rs::Term, rs::TokenStream)>,
    // pub infer: BTreeMap<Symbol, u32>,
}

type ItemDefId = u32;
type RustTyId = u32;

// Type

// #[derive(Clone)]
// pub enum ComputedType {
//     RustTy(RustTyId),
//     Vec {
//         ty: Box<ComputedType>,
//         rhs_sym: Symbol,
//     },
//     Unit,
//     Tuple {
//         types: Vec<ComputedType>,
//         fields: Vec<Symbol>,
//     },
//     Struct {
//         nonterminal: Symbol,
//         fields: Vec<Symbol>,
//     },
//     Infer {
//         nonterminal: Symbol,   
//     },
//     Terminal,
// }

// Creation

impl IrTranslator {
    pub fn new(ir: Ir) -> Self {
        // let layer_id = ir.arguments_from_outer_layer.as_ref()
        //                                             .map_or(0, |layer| layer.current_level());

        let mut this = IrTranslator {
            ir: ir,
            // type_map: BTreeMap::new(),
            // variant_names: BTreeMap::new(),
            // variant_map: vec![],
            // assert_type_equality: vec![],
            // infer: vec![],
            terminals: vec![],
        };
        this.compute_variant_map();
        this
    }

    fn compute_variant_map(&mut self) {
        self.compute_terminals();
        // self.compute_variant_names();
        // self.compute_types();
        // self.compute_type_equality_assertions();
        // self.compute_infer();

        // assert_eq!(self.variant_names.len(), self.type_map.len());

        // self.variant_map.extend(
        //     self.variant_names.iter().zip(self.type_map.iter()).map(|((sym1, name), (sym2, ty))| {
        //         assert_eq!(sym1, sym2);
        //         (*name, ty.generate())
        //     })
        // );
    }

    fn compute_terminals(&mut self) {
        for terminal in SymbolBitSet::terminal_set(&*self.ir.grammar).iter() {
            // Use external symbols, but translate later.
            let terminal = self.ir.externalize(terminal);
            self.terminals.push(terminal);
            // self.ir.type_map.insert(terminal, Ty::RustTerminalTy);
            // self.type_map.insert(terminal, ComputedType::Terminal);
        }
    }

    // fn compute_variant_names(&mut self) {
    //     let ir = &self.ir;
    //     let terminals = &self.terminals;
    //     self.variant_names = ir.type_map.iter().map(|(&external_sym, _ty)| {
    //         let name = ir.name_of_external(external_sym).unwrap();
    //         let opt_id = if terminals.iter().find(|&&sym| sym == external_sym).is_some() {
    //             None
    //         } else {
    //             Some(name.0)
    //         };
    //         let capitalized = self.capitalized_name(&name.as_str()[..], opt_id);
    //         (external_sym, rs::Ident::new(&capitalized[..], rs::Span::call_site()))
    //     }).collect();
    // }

    // fn compute_types(&mut self) {
    //     let mut work: Vec<_> = self.ir.type_map.iter().filter_map(|(sym, ty)|
    //         if ty.is_terminal() {
    //             None
    //         } else {
    //             Some((sym.clone(), ty.clone()))
    //         }
    //     ).collect();
    //     while !work.is_empty() {
    //         let work_len = work.len();
    //         work.retain(|&(nonterminal, ref ty)| {
    //             if let Some(computed_type) = self.try_compute_type(nonterminal, ty) {
    //                 self.type_map.insert(nonterminal, computed_type);
    //                 false
    //             } else {
    //                 true
    //             }
    //         });
    //         if work.len() == work_len {
    //             panic!("cycle detected");
    //         }
    //     }
    // }

    // fn compute_type_equality_assertions(&mut self) {
    //     let assert_type_equality = mem::replace(&mut self.ir.assert_type_equality, vec![]);
    //     let assert_type_equality = assert_type_equality.into_iter().filter_map(|(sym, ty)| {
    //         if let Ty::Infer = ty {
    //             None
    //         } else {
    //             let computed = self.try_compute_type(sym, &ty).expect("type not computed yet");
    //             Some((
    //                 self.type_map[&sym].generate(),
    //                 computed.generate()
    //             ))
    //         }
    //     }).collect::<Vec<_>>();
    //     self.assert_type_equality.extend(assert_type_equality);
    // }

    // fn compute_infer(&self) {
    //     for (nonterminal, ty) in self.type_map.iter() {
    //         match ty {
    //             &ComputedType::Infer { nonterminal } => {
    //                 let num = self.infer.len();
    //                 self.infer.insert(nonterminal, num as u32);
    //             }
    //             _ => {}
    //         }
    //     }
    // }

    // fn direct_dependencies<F>(&self, ty: &ComputedType) -> Vec<Option<&ComputedType>> {
    //     match ty {
    //         &ComputedType::Unit
    //         | &ComputedType::Infer { .. }
    //         | &ComputedType::RustTy(_)
    //         | &ComputedType::Terminal => {
    //             vec![]
    //         }
    //         &ComputedType::Tuple { ref fields, .. } | &ComputedType::Struct { ref fields, .. } => {
    //             fields.iter().map(|sym| self.type_map.get(sym)).collect()
    //         }
    //         &ComputedType::Vec { rhs_sym, .. } => {
    //             vec![self.type_map.get(rhs_sym)]
    //         }
    //     }
    // }

    // fn transitive_dependencies(&self, ty: &ComputedType) -> Vec<&ComputedType> {
    //     let mut dependencies = self.direct_dependencies(ty).into_iter().flat_map(|ty| ty).collect();
    //     let mut next_dependencies = vec![];
    //     let mut final_dependencies = vec![];
    //     while !dependencies.is_empty() {
    //         for ty in dependencies.into_iter() {
    //             let direct_dependencies = self.direct_dependencies(ty).into_iter().flat_map(|ty| ty).collect();
    //             if direct_dependencies.is_empty() {
    //                 final_dependencies.push(ty);
    //             } else {
    //                 next_dependencies.extend(direct_dependencies.into_iter());
    //             }
    //         }
    //         dependencies = next_dependencies;
    //     }
    //     final_dependencies
    // }

    // fn try_compute_type(&mut self, nonterminal: Symbol, ty: &Ty<Symbol>) -> Option<ComputedType> {
    //     let ty = self.compute_type(nonterminal, ty);
    //     if self.direct_dependencies(&ty).into_iter().all(|maybe_ty| maybe_ty.is_some()) {
    //         Some(ty)
    //     } else {
    //         None
    //     }
    // }

    // fn compute_type(&mut self, nonterminal: Symbol, ty: &Ty<Symbol>) -> ComputedType {
    //     match ty {
    //         &Ty::Auto(AutoTy::Tuple { ref fields }) => {
    //             match fields.len() {
    //                 0 => {
    //                     ComputedType::Unit
    //                 }
    //                 1 => {
    //                     self.type_map[&fields[0]].clone()
    //                 }
    //                 _ => {
    //                     ComputedType::Tuple {
    //                         types: fields.iter().map(|sym| self.type_map[sym].clone()).collect(),
    //                         fields: fields.clone(),
    //                     }
    //                 }
    //             }
    //         }
    //         &Ty::Auto(AutoTy::Struct { ref members }) => {
    //             // let capitalized_name = self.variant_names[&nonterminal];
    //             ComputedType::Struct {
    //                 nonterminal,
    //                 fields: members.iter().map(|(_, sym)| sym).collect(),
    //             }
    //             // let member_defs = members.iter().map(|(&name, &sym)| {
    //             //     let ty = self.type_map[&sym].generate();
    //             //     quote! { #name: #ty }
    //             // });
    //             // let member_clones = members.iter().map(|(&name, _)| {
    //             //     quote! { #name: #name.clone() }
    //             // });
    //             // let item_defs = quote! {
    //             //     struct #capitalized_name<#generics> {
    //             //         #(#member_defs)*
    //             //     }

    //             //     impl<#generics> Clone for #capitalized_name {
    //             //         fn clone(&self) -> #ty {
    //             //             #capitalized_name {
    //             //                 #(#member_clones)*
    //             //             }
    //             //         }
    //             //     }
    //             // };
    //         }
    //         &Ty::RustTy(rust_ty_id) => {
    //             ComputedType::RustTy(rust_ty_id)
    //         }
    //         &Ty::SequenceVec(rhs_sym) => {
    //             ComputedType::Vec {
    //                 ty: Box::new(self.type_map[&rhs_sym].clone()),
    //                 rhs_sym,
    //             }
    //         }
    //         &Ty::Infer => {
    //             ComputedType::Infer { nonterminal }
    //         }
    //     }
    // }

    // fn capitalized_name(&self, name: &str, opt_id: Option<u32>) -> String {
    //     let mut capitalized: String = name.split('_').flat_map(|word| {
    //         let mut chars = word.chars();
    //         let letter = chars.next();
    //         letter.into_iter().flat_map(|ch| ch.to_uppercase()).chain(chars)
    //     }).collect();
    //     // Optionally add the unique id.
    //     if let Some(id) = opt_id {
    //         write!(capitalized, "_{}", id).unwrap();
    //     }
    //     capitalized
    // }
}

// Generation, after the following things are computed:
// * variant map, with variant names
// * type equality assertions

impl IrTranslator {
    pub fn generate(&mut self) -> InstructionList {
        let list = translate_ir(self);
        InstructionList { list }
        // let epsilon_actions = self.generate_epsilon_actions();

        // let internal_grammar = InternalGrammar::from_processed_grammar_with_maps(
        //     self.ir.grammar.clone(),
        //     &Mapping::new(0),
        //     &self.ir.nulling_grammar,
        // );

        // let mut processed_rule = vec![];
        // let mut processed_sequences = vec![];

        // let mut seen_origin = HashSet::new();
        // // For generating actions.
        // let external_origins = self.ir.grammar.rules().filter_map(|rule| {
        //     if let Some(origin) = rule.history().origin() {
        //         if seen_origin.insert(origin) {
        //             Some(origin)
        //         } else {
        //             None
        //         }
        //     } else {
        //         // Skip this rule.
        //         None
        //     }
        // });

        // for origin in external_origins {
        //     // Get the basic rule.
        //     let basic_rule = &self.ir.basic_rules[origin as usize];
        //     // The basic rule's lhs is often equal to the processed rule's rhs.
        //     // They are not equal for precedenced rules, due to their rewrite.
        //     // We should use the basic rule's lhs. (It is already external.)
        //     let rule_lhs = basic_rule.lhs.elem;
        //     let variant = self.variant_names[&rule_lhs];

        //     // Diverge on sequence rules
        //     if let Some((rust_expr, patterns)) = self.get_action(origin as usize) {
        //         processed_rule.push(GenRule {
        //             id: origin as u32,
        //             variant: variant,
        //             action: rust_expr,
        //             args: patterns
        //         });
        //     } else {
        //         let elem_variant = self.variant_names[&basic_rule.rhs[0].elem];
        //         processed_sequences.push(GenSequence {
        //             id: origin as u32,
        //             variant: variant,
        //             elem_variant: elem_variant,
        //         });
        //     }
        // }

        // let terminal_names = self.terminals.iter().map(|&terminal| {
        //     self.ir.name_of_external(terminal).unwrap().to_ident()
        // }).collect();
        // let terminal_ids = self.terminals.iter().map(|&terminal| {
        //     self.ir.internalize(terminal).unwrap().usize()
        // }).collect();

        // let start = self.ir.grammar.start();
        // let external_start = self.ir.externalize(start);

        // let start_variant = self.variant_names[&external_start];
        // let start_type = self.type_map[&external_start].clone();

        // let grammar_parts = internal_grammar.to_parts();

        // let outer_layer = self.ir.arguments_from_outer_layer.as_ref();
        // let inner_layer_level = outer_layer.map_or(0, |layer| layer.current_level() as u32) + 1;

        // let arguments_from_outer_layer_opt = self.ir.arguments_from_outer_layer.as_ref().map(|arg| {
        //     let terminal_names = arg.terminals().iter().map(|&sym| {
        //         self.ir.name_of_external(sym).unwrap().to_ident()
        //     }).collect();
        //     let terminal_variants = arg.terminals().iter().map(|&sym| {
        //         self.variant_names[&sym]
        //     }).collect::<Vec<_>>();
        //     let terminal_bare_variants = terminal_variants.iter().map(|name| {
        //         rs::Ident::new(&name[.. name.rfind("_").unwrap()], rs::Span::call_site())
        //     }).collect();
        //     GenArgumentsFromOuterLayer {
        //         terminal_names: terminal_names,
        //         terminal_variants: terminal_variants,
        //         terminal_bare_variants: terminal_bare_variants,
        //     }
        // });

        // let inner_layer = match &self.ir.invocation_of_inner_layer {
        //     &InvocationOfInnerLayer::Invoke { ref lexer_invocation, ref embedded_strings } => {
        //         Some(GenInvocationOfInnerLayer {
        //             lexer_name: lexer_invocation.name(),
        //             lexer_tts: lexer_invocation.tts(),
        //             str_lhs: embedded_strings.iter().map(|embed| {
        //                 self.ir.name_of_external(embed.symbol.elem).unwrap().to_ident()
        //             }).collect(),
        //             str_rhs: embedded_strings.iter().map(|embed| {
        //                 embed.string.node
        //             }).collect(),
        //             char_range_lhs: vec![],
        //             char_ranges: vec![],
        //         })
        //     }
        //     &InvocationOfInnerLayer::CharClassifier(ref char_ranges) => {
        //         Some(GenInvocationOfInnerLayer {
        //             lexer_name: rs::Ident::new(CHAR_CLASSIFIER_MACRO_NAME, rs::Span::call_site()),
        //             lexer_tts: rs::TokenStream::new(),
        //             str_lhs: vec![],
        //             str_rhs: vec![],
        //             char_range_lhs: char_ranges.iter().map(|&(_, sym)| {
        //                 self.ir.name_of_external(sym).unwrap().to_ident()
        //             }).collect(),
        //             char_ranges: char_ranges.iter().map(|&(range, _)| {
        //                 range
        //             }).collect(),
        //         })
        //     }
        //     &InvocationOfInnerLayer::None => {
        //         None
        //     }
        // };
        // // Names of all internal symbols
        // let sym_names = (0 .. grammar_parts.num_syms).map(|sym_id| {
        //     let internal_sym = Symbol::from(sym_id);
        //     let external_sym = self.ir.externalize(internal_sym);
        //     let sym_name = self.ir.name_of_external(external_sym);
        //     if let Some(sym_name) = sym_name {
        //         sym_name.as_str().to_string()
        //     } else {
        //         format!("g{}", sym_id)
        //     }
        // }).collect();
        // // Per-rule IDs
        // let trace_rule_ids = self.ir.trace_sources.iter().map(|source| {
        //     source.rule_id
        // }).collect();
        // // Positions
        // let trace_rule_pos = self.ir.trace_sources.iter().map(|source| {
        //     source.rule_pos.clone()
        // }).collect();
        // // Tokens
        // let trace_tokens = self.ir.trace_tokens.clone();
        // // Construct result
        // GenParser {
        //     grammar_parts: grammar_parts,

        //     start_variant: start_variant,
        //     start_type: start_type,

        //     epsilon_actions: epsilon_actions,
        //     rules: processed_rule,
        //     sequences: processed_sequences,

        //     variant_map: self.variant_map.clone(),

        //     terminal_names: terminal_names,
        //     terminal_ids: terminal_ids,

        //     arguments_from_outer_layer: arguments_from_outer_layer_opt,

        //     inner_layer_level: inner_layer_level,
        //     inner_layer: inner_layer,

        //     trace_rule_ids: trace_rule_ids,
        //     trace_rule_pos: trace_rule_pos,
        //     trace_tokens: trace_tokens,

        //     sym_names: sym_names,

        //     item_definitions: self.item_definitions.clone(),

        //     infer: self.infer.clone(),

        //     unique_names: self.unique_names,
        // }
    }

    // fn get_action(
    //     &self,
    //     origin: usize)
    //     -> Option<Vec<GenArg>>
    // {
    //     let basic_rule = &self.ir.basic_rules[origin];
    //     let mut patterns = vec![];

    //     match &basic_rule.action {
    //         &Action::Struct { ref deep_binds, ref shallow_binds, ref expr } => {
    //             if !deep_binds.is_empty() {
    //                 for &rhs_pos in deep_binds {
    //                     let rhs_sym = basic_rule.rhs[rhs_pos].elem;
    //                     let variant = self.variant_names[&rhs_sym];
    //                     let pat = self.get_auto_pattern(rhs_sym).expect("auto pattern not found");
    //                     patterns.push(GenArg {
    //                         num: rhs_pos,
    //                         nonterminal: rhs_sym,
    //                     });
    //                 }
    //             } else if !shallow_binds.is_empty() {
    //                 for &(rhs_pos, ident) in shallow_binds {
    //                     let rhs_sym = basic_rule.rhs[rhs_pos].elem;
    //                     // let variant = self.variant_names[&rhs_sym];
    //                     // let pat = ident.into_token_stream();

    //                     patterns.push(GenArg {
    //                         num: rhs_pos,
    //                         nonterminal: rhs_sym,
    //                     });
    //                 }
    //             }

    //             match expr {
    //                 &ActionExpr::Auto => {
    //                     self.get_auto_expr(basic_rule.lhs.node)
    //                 }
    //                 &ActionExpr::Inline { ref expr } => {
    //                     expr.clone()
    //                 }
    //             }
    //         }
    //         &Action::Tuple { ref tuple_binds } => {
    //             let idents: Vec<_>;
    //             idents = tuple_binds.iter().map(|&pos| {
    //                 rs::Ident::new(format!("arg{}", pos), rs::Span::call_site())
    //             }).collect();
    //             patterns = tuple_binds.iter().zip(idents.iter()).map(|(&pos, &ident)| {
    //                 let variant = self.variant_names[&basic_rule.rhs[pos].node];
    //                 let pat = ident.into_token_stream();
    //                 GenArg {
    //                     num: pos,
    //                     variant: variant,
    //                     pat: pat
    //                 }
    //             }).collect();
    //             match idents.len() {
    //                 0 => {
    //                     quote! { () }
    //                 }
    //                 1 => {
    //                     idents[0].into_token_stream()
    //                 }
    //                 _ => {
    //                     quote! { ( #(#idents),* ) }
    //                 }
    //             }
    //         }
    //         &Action::Sequence => {
    //             return None;
    //         }
    //     };
    //     Some((rust_expr, patterns))
    // }

    // fn get_auto_expr(&self, nonterminal: Symbol) -> rs::TokenStream {
    //     match &self.ir.type_map[&nonterminal] {
    //         &Ty::Auto(AutoTy::Struct { ref members }) => {
    //             let name = self.variant_names[&nonterminal];
    //             let members2 = members;
    //             quote! {
    //                 #name {
    //                     #(#members: #members2),*
    //                 }
    //             }
    //         }
    //         _ => unreachable!()
    //     }
    // }

    // fn get_auto_pattern(&self, nonterminal: Symbol) -> Option<rs::TokenStream> {
    //     match &self.ir.type_map[&nonterminal] {
    //         &Ty::Auto(AutoTy::Struct { ref members }) => {
    //             let name = self.variant_names[&nonterminal];
    //             let mut pats = vec![];
    //             for (&id, &sym) in members {
    //                 // Recursion
    //                 if let Some(pat) = self.get_auto_pattern(sym) {
    //                     pats.push(quote! { #id: #pat });
    //                 } else {
    //                     pats.push(quote! { #id });
    //                 }
    //             }
    //             Some(quote! { #name { #(),* } })
    //         }
    //         _ => {
    //             None
    //         }
    //     }
    // }

    // fn generate_epsilon_actions(&mut self) -> GenEpsilonActions {
    //     // Nulling rules
    //     // are these equal?
    //     let num_nulling_syms = self.ir.grammar.num_syms();
    //     let num_all_nulling_syms = self.ir.nulling_grammar.sym_source().num_syms();
    //     // Declarations
    //     let mut null_rules = iter::repeat(vec![]).take(num_nulling_syms).collect::<Vec<_>>();
    //     let mut null_num = iter::repeat(0).take(num_nulling_syms).collect::<Vec<_>>();
    //     let mut null_order = iter::repeat(u32::MAX).take(num_nulling_syms).collect::<Vec<_>>();
    //     // These vectors may be longer than other vectors.
    //     let mut null_deps = iter::repeat(0).take(num_all_nulling_syms).collect::<Vec<_>>();
    //     let mut null_intermediate = iter::repeat(None)
    //                                 .take(num_all_nulling_syms)
    //                                 .collect::<Vec<_>>();
    //     // Temporary variables.
    //     let mut null_work = vec![];
    //     let mut null_num_rules = 0;
    //     // Here, the name must start with "_" so that we don't get "unnecessary mut"
    //     // warnings later on. Yes, underscore prefix works for ignoring more than just
    //     // "unused variable" warnings.
    //     let continuation_label = rs::gensym("_cont");
    //     for rule in self.ir.nulling_grammar.rules() {
    //         if rule.rhs().len() == 0 {
    //             // Can `origin` be None? In sequences? No.
    //             let origin = rule.history().origin().unwrap() as usize;
    //             let basic_rule = self.ir.basic_rules.get(origin);
    //             let action = basic_rule.map(|basic_rule| &basic_rule.action);
    //             let action_expr = match action {
    //                 Some(&Action::Tuple { .. }) => {
    //                     unreachable!("found nulling rule that has a tuple type")
    //                 }
    //                 Some(&Action::Struct { expr: ActionExpr::Inline { ref expr }, .. }) => {
    //                     expr.clone()
    //                 }
    //                 // A sequence rule.
    //                 Some(&Action::Sequence) => {
    //                     quote! { Vec::new() }
    //                 }
    //                 _ => unreachable!("found unknown action")
    //             };
    //             let inner = quote! { #continuation_label(#action_expr) };
    //             null_rules[rule.lhs().usize()].push(inner);
    //             null_num[rule.lhs().usize()] += 1;
    //             if null_order[rule.lhs().usize()] > null_num_rules {
    //                 null_order[rule.lhs().usize()] = null_num_rules;
    //                 null_num_rules += 1;
    //             }
    //         } else {
    //             if rule.history().origin().is_none() {
    //                 null_intermediate[rule.lhs().usize()] = Some(rule.rhs().to_owned());
    //             }
    //             null_work.push((
    //                 rule.lhs(),
    //                 rule.rhs()[0],
    //                 rule.rhs().get(1).cloned(),
    //                 rule.history.origin()
    //             ));
    //             null_deps[rule.lhs().usize()] += 1;
    //         }
    //     }
    //     // Generate code that uses macros and a continuation-passing style.
    //     while !null_work.is_empty() {
    //         null_work.retain(|&(lhs, rhs0, rhs1, action)| {
    //             let rhs1_is_done = rhs1.map_or(true, |rhs1| null_deps[rhs1.usize()] == 0);
    //             let rhs0_is_done = null_deps[rhs0.usize()] == 0;
    //             if !rhs0_is_done || !rhs1_is_done {
    //                 // Process this later.
    //                 true
    //             } else if let Some(origin) = action {
    //                 // There are no sequence rules among nulling rules, so unwrapping is ok.
    //                 let (action_expr, patterns) = self.get_action(origin as usize).unwrap();
    //                 let mut pats = HashMap::new();
    //                 for arg in patterns.into_iter() {
    //                     pats.insert(arg.num, arg.pat);
    //                 }
    //                 let mut factors = vec![];
    //                 let mut factor_stack = vec![];
    //                 if let Some(rhs1) = rhs1 {
    //                     factor_stack.push(rhs1);
    //                 }
    //                 factor_stack.push(rhs0);
    //                 while let Some(sym) = factor_stack.pop() {
    //                     if let &Some(ref rhs) = &null_intermediate[sym.usize()] {
    //                         factor_stack.extend(rhs.iter().cloned());
    //                     } else {
    //                         factors.push(sym);
    //                     }
    //                 }
    //                 let mut inner_layer = quote! { #continuation_label(#action_expr) };
    //                 for (i, &factor) in factors.iter().enumerate().rev() {
    //                     let name = self.lowercase_name(self.ir.externalize(factor));
    //                     let pat = pats.get(&i).cloned().unwrap_or_else(|| quote! { _ });
    //                     inner_layer = quote! {
    //                         #name!(
    //                             |#pat| {
    //                                 #inner_layer
    //                             }
    //                         )
    //                     };
    //                 }
    //                 null_rules[lhs.usize()].push(inner_layer);
    //                 null_num[lhs.usize()] += factors.iter().fold(1, |acc, &factor| {
    //                     acc * null_num[factor.usize()]
    //                 });
    //                 // what is this order for?
    //                 if null_order[lhs.usize()] > null_num_rules {
    //                     null_order[lhs.usize()] = null_num_rules;
    //                     null_num_rules += 1;
    //                 }
    //                 null_deps[lhs.usize()] -= 1;
    //                 false
    //             } else {
    //                 null_deps[lhs.usize()] -= 1;
    //                 false
    //             }
    //         });
    //         // check if fixpoint is reached?
    //     }

    //     let mut null = null_rules.into_iter().zip(null_num).enumerate().collect::<Vec<_>>();
    //     null.sort_by(|&(left, _), &(right, _)| {
    //         // Those that are used by other symbols come first.
    //         null_order[left].cmp(&null_order[right])
    //     });

    //     let mut rules = vec![];
    //     let mut roots = vec![];
    //     for (i, (blocks, num)) in null {
    //         let lhs_sym = Symbol::from(i);
    //         let external_lhs = self.ir.externalize(lhs_sym);
    //         if !blocks.is_empty() {
    //             let ident = self.lowercase_name(external_lhs);
    //             rules.push(GenEpsilonIntermediateRule {
    //                 name: ident,
    //                 blocks: blocks
    //             });
    //         }
    //         if num != 0 {
    //             // This nulling forest is not empty.
    //             let ident = self.lowercase_name(external_lhs);
    //             roots.push(GenEpsilonRootAction {
    //                 // This symbol must be internal
    //                 sym: lhs_sym,
    //                 num: num,
    //                 name: ident,
    //                 variant_name: self.variant_names[&external_lhs],
    //             });
    //         }
    //     }
    //     GenEpsilonActions {
    //         rules: rules,
    //         roots: roots,
    //         continuation_label: continuation_label,
    //     }
    // }

    // fn lowercase_name(&self, sym: Symbol) -> rs::Ident {
    //     let rs_name = self.ir.name_of_external(sym).unwrap();
    //     let mut name = rs_name.as_str().to_string();
    //     write!(name, "_{}", rs_name.0).unwrap();
    //     rs::gensym(&name[..])
    // }
}