1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
use float::Float;

use approx::{AbsDiffEq, RelativeEq, UlpsEq};

use {cast, Component, Lab, LabHue, Lch, RgbHue, Xyz, Yxy};
use white_point::WhitePoint;

macro_rules! impl_eq {
    (  $self_ty: ident , [$($element: ident),+]) => {
        impl<Wp, T> AbsDiffEq for $self_ty<Wp, T>
        where T: Component + Float + AbsDiffEq,
            T::Epsilon: Copy + Float,
            Wp: WhitePoint + PartialEq
        {
            type Epsilon = T::Epsilon;

            fn default_epsilon() -> Self::Epsilon {
                T::default_epsilon()
            }

            fn abs_diff_eq(&self, other: &Self, epsilon: T::Epsilon) -> bool {
                $( self.$element.abs_diff_eq(&other.$element, epsilon) )&&+
            }
            fn abs_diff_ne(&self, other: &Self, epsilon: T::Epsilon) -> bool {
                $( self.$element.abs_diff_ne(&other.$element, epsilon) )||+
            }
        }

        impl<Wp, T> RelativeEq for $self_ty<Wp, T>
        where T: Component + Float + RelativeEq,
            T::Epsilon: Copy + Float,
            Wp: WhitePoint + PartialEq
        {
            fn default_max_relative() -> T::Epsilon {
                T::default_max_relative()
            }

            fn relative_eq(&self, other: &Self, epsilon: T::Epsilon, max_relative: T::Epsilon) -> bool {
                $( self.$element.relative_eq(&other.$element, epsilon, max_relative) )&&+
            }
            fn relative_ne(&self, other: &Self, epsilon: T::Epsilon, max_relative: T::Epsilon) -> bool {
                $( self.$element.relative_ne(&other.$element, epsilon, max_relative) )||+
            }
        }

        impl<Wp, T> UlpsEq for $self_ty<Wp, T>
        where T: Component + Float + UlpsEq,
            T::Epsilon: Copy + Float,
            Wp: WhitePoint + PartialEq
        {
            fn default_max_ulps() -> u32 {
                T::default_max_ulps()
            }

            fn ulps_eq(&self, other: &Self, epsilon: T::Epsilon, max_ulps: u32) -> bool {
                $( self.$element.ulps_eq(&other.$element, epsilon, max_ulps) )&&+
            }
            fn ulps_ne(&self, other: &Self, epsilon: T::Epsilon, max_ulps: u32) -> bool {
                $( self.$element.ulps_ne(&other.$element, epsilon, max_ulps) )||+
            }
        }
    }
}

impl_eq!(Xyz, [x, y, z]);
impl_eq!(Yxy, [y, x, luma]);
impl_eq!(Lab, [l, a, b]);
impl_eq!(Lch, [l, chroma, hue]);

// For hues, the difference is calculated and compared to zero. However due to
// the way floating point's work this is not so simple.
//
// Reference:
// https://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/
//
// The recommendation is use 180 * epsilon as the epsilon and do not compare by
// ulps. Because of this we loose some precision for values close to 0.0.
macro_rules! impl_eq_hue {
    (  $self_ty: ident ) => {
        impl<T: Float + AbsDiffEq> AbsDiffEq for $self_ty<T>
        where T::Epsilon: Float
        {
            type Epsilon = T::Epsilon;

            fn default_epsilon() -> Self::Epsilon {
                T::default_epsilon() * cast(180.0)
            }

            fn abs_diff_eq(&self, other: &Self, epsilon: T::Epsilon) -> bool {
                let diff: T = (*self - *other).to_degrees();
                T::abs_diff_eq(&diff, &T::zero(), epsilon)
            }
            fn abs_diff_ne(&self, other: &Self, epsilon: T::Epsilon) -> bool {
                let diff: T = (*self - *other).to_degrees();
                T::abs_diff_ne(&diff, &T::zero(), epsilon)
            }
        }

        impl<T: Float + RelativeEq> RelativeEq for $self_ty<T>
        where T::Epsilon: Float
        {
            fn default_max_relative() -> Self::Epsilon {
                T::default_max_relative() * cast(180.0)
            }

            fn relative_eq(&self, other: &Self, epsilon: T::Epsilon, max_relative: T::Epsilon) -> bool {
                let diff: T = (*self - *other).to_degrees();
                T::relative_eq(&diff, &T::zero(), epsilon, max_relative)
            }
            fn relative_ne(&self, other: &Self, epsilon: Self::Epsilon, max_relative: Self::Epsilon) -> bool {
                let diff: T = (*self - *other).to_degrees();
                T::relative_ne(&diff, &T::zero(), epsilon, max_relative)
            }
        }

        impl<T: Float + UlpsEq> UlpsEq for $self_ty<T>
        where T::Epsilon: Float
        {
            fn default_max_ulps() -> u32 {
                T::default_max_ulps() * 180
            }

            fn ulps_eq(&self, other: &Self, epsilon: T::Epsilon, max_ulps: u32) -> bool {
                let diff: T = (*self - *other).to_degrees();
                T::ulps_eq(&diff, &T::zero(), epsilon, max_ulps)
            }
            fn ulps_ne(&self, other: &Self, epsilon: Self::Epsilon, max_ulps: u32) -> bool {
                let diff: T = (*self - *other).to_degrees();
                T::ulps_ne(&diff, &T::zero(), epsilon, max_ulps)
            }
        }
    }
}

impl_eq_hue!(LabHue);
impl_eq_hue!(RgbHue);