1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
//!A library that makes linear color calculations and conversion easy and
//!accessible for anyone. It provides both precision tools that lets you work
//!in exactly the color space you want to, as well as a general color type
//!that abstracts away some of the technical details.
//!
//!# Linear?
//!
//!Colors in, for example, images are often "gamma corrected" or stored in
//!sRGB format as a compression method and to prevent banding. This is also a
//!bit of a legacy from the ages of the CRT monitors, where the output from
//!the electron guns was nonlinear. The problem is that these formats doesn't
//!represent the actual intensities, and the compression has to be reverted to
//!make sure that any operations on the colors are accurate. This library uses
//!a completely linear work flow, and comes with the tools for transitioning
//!between linear and non-linear RGB.
//!
//!# Transparency
//!
//!There are many cases where pixel transparency is important, but there are
//!also many cases where it becomes a dead weight, if it's always stored
//!together with the color, but not used. Palette has therefore adopted a
//!structure where the transparency component (alpha) is attachable using the
//![`Alpha`](struct.Alpha.html) type, instead of having copies of each color
//!space.
//!
//!This approach comes with the extra benefit of allowing operations to
//!selectively affect the alpha component:
//!
//!```
//!use palette::{Rgb, Rgba};
//!
//!let mut c1 = Rgba::new(1.0, 0.5, 0.5, 0.8);
//!let c2 = Rgb::new(0.5, 1.0, 1.0);
//!
//!c1.color = c1.color * c2; //Leave the alpha as it is
//!c1.blue += 0.2; //The color components can easily be accessed
//!c1 = c1 * 0.5; //Scale both the color and the alpha
//!```


#![doc(html_root_url = "http://ogeon.github.io/docs/palette/master/")]

#![cfg_attr(feature = "strict", deny(missing_docs))]
#![cfg_attr(feature = "strict", deny(warnings))]

#[macro_use]
extern crate approx;

extern crate num;

#[cfg(feature = "phf")]
extern crate phf;

use num::{Float, ToPrimitive, NumCast};

use approx::ApproxEq;

use pixel::{Srgb, GammaRgb};
use blend::PreAlpha;

pub use gradient::Gradient;
pub use alpha::Alpha;
pub use blend::Blend;

pub use rgb::{Rgb, Rgba};
pub use luma::{Luma, Lumaa};
pub use xyz::{Xyz, Xyza};
pub use lab::{Lab, Laba};
pub use lch::{Lch, Lcha};
pub use hsv::{Hsv, Hsva};
pub use hsl::{Hsl, Hsla};
pub use yxy::{Yxy, Yxya};
pub use hwb::{Hwb, Hwba};

pub use hues::{LabHue, RgbHue};
pub use convert::{FromColor, IntoColor};

//Helper macro for checking ranges and clamping.
#[cfg(test)]
macro_rules! assert_ranges {
    (@make_tuple $first:pat, $next:ident,) => (($first, $next));

    (@make_tuple $first:pat, $next:ident, $($rest:ident,)*) => (
        assert_ranges!(@make_tuple ($first, $next), $($rest,)*)
    );

    (
        $ty:ident;
        limited {$($limited:ident: $limited_from:expr => $limited_to:expr),+}
        limited_min {$($limited_min:ident: $limited_min_from:expr => $limited_min_to:expr),*}
        unlimited {$($unlimited:ident: $unlimited_from:expr => $unlimited_to:expr),*}
    ) => (
        {
            use std::iter::repeat;
            use Limited;

            {
                print!("checking below limits ... ");
                $(
                    let from = $limited_from;
                    let to = $limited_to;
                    let diff = to - from;
                    let $limited = (1..11).map(|i| from - (i as f64 / 10.0) * diff);
                )+

                $(
                    let from = $limited_min_from;
                    let to = $limited_min_to;
                    let diff = to - from;
                    let $limited_min = (1..11).map(|i| from - (i as f64 / 10.0) * diff);
                )*

                $(
                    let from = $unlimited_from;
                    let to = $unlimited_to;
                    let diff = to - from;
                    let $unlimited = (1..11).map(|i| from - (i as f64 / 10.0) * diff);
                )*

                for assert_ranges!(@make_tuple (), $($limited,)+ $($limited_min,)* $($unlimited,)* ) in repeat(()) $(.zip($limited))+ $(.zip($limited_min))* $(.zip($unlimited))* {
                    let c = $ty::<f64> {
                        $($limited: $limited.into(),)+
                        $($limited_min: $limited_min.into(),)*
                        $($unlimited: $unlimited.into(),)*
                    };
                    let clamped = c.clamp();
                    let expected = $ty {
                        $($limited: $limited_from.into(),)+
                        $($limited_min: $limited_min_from.into(),)*
                        $($unlimited: $unlimited.into(),)*
                    };

                    assert!(!c.is_valid());
                    assert_eq!(clamped, expected);
                }

                println!("ok")
            }

            {
                print!("checking within limits ... ");
                $(
                    let from = $limited_from;
                    let to = $limited_to;
                    let diff = to - from;
                    let $limited = (0..11).map(|i| from + (i as f64 / 10.0) * diff);
                )+

                $(
                    let from = $limited_min_from;
                    let to = $limited_min_to;
                    let diff = to - from;
                    let $limited_min = (0..11).map(|i| from + (i as f64 / 10.0) * diff);
                )*

                $(
                    let from = $unlimited_from;
                    let to = $unlimited_to;
                    let diff = to - from;
                    let $unlimited = (0..11).map(|i| from + (i as f64 / 10.0) * diff);
                )*

                for assert_ranges!(@make_tuple (), $($limited,)+ $($limited_min,)* $($unlimited,)* ) in repeat(()) $(.zip($limited))+ $(.zip($limited_min))* $(.zip($unlimited))* {
                    let c = $ty::<f64> {
                        $($limited: $limited.into(),)+
                        $($limited_min: $limited_min.into(),)*
                        $($unlimited: $unlimited.into(),)*
                    };
                    let clamped = c.clamp();

                    assert!(c.is_valid());
                    assert_eq!(clamped, c);
                }

                println!("ok")
            }

            {
                print!("checking above limits ... ");
                $(
                    let from = $limited_from;
                    let to = $limited_to;
                    let diff = to - from;
                    let $limited = (1..11).map(|i| to + (i as f64 / 10.0) * diff);
                )+

                $(
                    let from = $limited_min_from;
                    let to = $limited_min_to;
                    let diff = to - from;
                    let $limited_min = (1..11).map(|i| to + (i as f64 / 10.0) * diff);
                )*

                $(
                    let from = $unlimited_from;
                    let to = $unlimited_to;
                    let diff = to - from;
                    let $unlimited = (1..11).map(|i| to + (i as f64 / 10.0) * diff);
                )*

                for assert_ranges!(@make_tuple (), $($limited,)+ $($limited_min,)* $($unlimited,)* ) in repeat(()) $(.zip($limited))+ $(.zip($limited_min))* $(.zip($unlimited))* {
                    let c = $ty::<f64> {
                        $($limited: $limited.into(),)+
                        $($limited_min: $limited_min.into(),)*
                        $($unlimited: $unlimited.into(),)*
                    };
                    let clamped = c.clamp();
                    let expected = $ty {
                        $($limited: $limited_to.into(),)+
                        $($limited_min: $limited_min.into(),)*
                        $($unlimited: $unlimited.into(),)*
                    };

                    assert!(!c.is_valid());
                    assert_eq!(clamped, expected);
                }

                println!("ok")
            }
        }
    );
}

pub mod gradient;
pub mod pixel;
pub mod blend;

#[cfg(feature = "named")]
pub mod named;

mod alpha;
mod rgb;
mod luma;
mod yxy;
mod xyz;
mod lab;
mod lch;
mod hsv;
mod hsl;
mod hwb;

mod hues;

mod tristimulus;
mod convert;
mod equality;

macro_rules! make_color {
    ($(
        #[$variant_comment:meta]
        $variant:ident $(and $($representations:ident),+ )* {$(
            #[$ctor_comment:meta]
            $ctor_name:ident $( <$( $ty_params:ident: $ty_param_traits:ident $( <$( $ty_inner_traits:ident ),*> )*),*> )* ($($ctor_field:ident : $ctor_ty:ty),*) [alpha: $alpha_ty:ty] => $ctor_original:ident;
        )+}
    )+) => (

        ///Generic color with an alpha component. See the [`Colora` implementation in `Alpha`](struct.Alpha.html#Colora).
        pub type Colora<T = f32> = Alpha<Color<T>, T>;

        ///A generic color type.
        ///
        ///The `Color` may belong to any color space and it may change
        ///depending on which operation is performed. That makes it immune to
        ///the "without conversion" rule of the operations it supports. The
        ///color spaces are selected as follows:
        ///
        /// * `Mix`: RGB for no particular reason, except that it's intuitive.
        /// * `Shade`: CIE L*a*b* for its luminance component.
        /// * `Hue` and `GetHue`: CIE L*C*h° for its hue component and how it preserves the apparent lightness.
        /// * `Saturate`: CIE L*C*h° for its chromaticity component and how it preserves the apparent lightness.
        ///
        ///It's not recommended to use `Color` when full control is necessary,
        ///but it can easily be converted to a fixed color space in those
        ///cases.
        #[derive(Clone, Copy, Debug)]
        pub enum Color<T:Float = f32> {
            $(#[$variant_comment] $variant($variant<T>)),+
        }

        impl<T:Float> Color<T> {
            $(
                $(
                    #[$ctor_comment]
                    pub fn $ctor_name$(<$($ty_params : $ty_param_traits$( <$( $ty_inner_traits ),*> )*),*>)*($($ctor_field: $ctor_ty),*) -> Color<T> {
                        Color::$variant($variant::$ctor_original($($ctor_field),*))
                    }
                )+
            )+
        }

        ///<span id="Colora"></span>[`Colora`](type.Colora.html) implementations.
        impl<T:Float> Alpha<Color<T>, T> {
            $(
                $(
                    #[$ctor_comment]
                    pub fn $ctor_name$(<$($ty_params : $ty_param_traits$( <$( $ty_inner_traits ),*> )*),*>)*($($ctor_field: $ctor_ty,)* alpha: $alpha_ty) -> Colora<T> {
                        Alpha::<$variant<T>, T>::$ctor_original($($ctor_field,)* alpha).into()
                    }
                )+
            )+
        }

        impl<T:Float> Mix for Color<T> {
            type Scalar = T;

            fn mix(&self, other: &Color<T>, factor: T) -> Color<T> {
                Rgb::from(*self).mix(&Rgb::from(*other), factor).into()
            }
        }

        impl<T:Float> Shade for Color<T> {
            type Scalar = T;

            fn lighten(&self, amount: T) -> Color<T> {
                Lab::from(*self).lighten(amount).into()
            }
        }

        impl<T:Float> GetHue for Color<T> {
            type Hue = LabHue<T>;

            fn get_hue(&self) -> Option<LabHue<T>> {
                Lch::from(*self).get_hue()
            }
        }

        impl<T:Float> Hue for Color<T> {
            fn with_hue(&self, hue: LabHue<T>) -> Color<T> {
                Lch::from(*self).with_hue(hue).into()
            }

            fn shift_hue(&self, amount: LabHue<T>) -> Color<T> {
                Lch::from(*self).shift_hue(amount).into()
            }
        }

        impl<T:Float> Saturate for Color<T> {
            type Scalar = T;

            fn saturate(&self, factor: T) -> Color<T> {
                Lch::from(*self).saturate(factor).into()
            }
        }

        impl<T: Float> Blend for Color<T> {
            type Color = Rgb<T>;

            fn into_premultiplied(self) -> PreAlpha<Rgb<T>, T> {
                Rgba::from(self).into()
            }

            fn from_premultiplied(color: PreAlpha<Rgb<T>, T>) -> Self {
                Rgba::from(color).into()
            }
        }

        impl<T> ApproxEq for Color<T> where
            T: Float + ApproxEq,
            T::Epsilon: Copy + Float,
        {
            type Epsilon = T::Epsilon;

            fn default_epsilon() -> Self::Epsilon {
                T::default_epsilon()
            }

            fn default_max_relative() -> Self::Epsilon {
                T::default_max_relative()
            }

            fn default_max_ulps() -> u32 {
                T::default_max_ulps()
            }

            fn relative_eq(&self, other: &Self, epsilon: Self::Epsilon, max_relative: Self::Epsilon) -> bool {
                match (*self, *other) {
                    $((Color::$variant(ref s), Color::$variant(ref o)) => s.relative_eq(o, epsilon, max_relative),)+
                    _ => false
                }
            }

            fn ulps_eq(&self, other: &Self, epsilon: Self::Epsilon, max_ulps: u32) -> bool{
                match (*self, *other) {
                    $((Color::$variant(ref s), Color::$variant(ref o)) => s.ulps_eq(o, epsilon, max_ulps),)+
                    _ => false
                }
            }
        }

        $(
            impl<T:Float> From<$variant<T>> for Color<T> {
                fn from(color: $variant<T>) -> Color<T> {
                    Color::$variant(color)
                }
            }

            impl<T:Float> From<Alpha<$variant<T>, T>> for Color<T> {
                fn from(color: Alpha<$variant<T>,T>) -> Color<T> {
                    Color::$variant(color.color)
                }
            }

            impl<T:Float> From<Alpha<$variant<T>, T>> for Alpha<Color<T>,T> {
                fn from(color: Alpha<$variant<T>,T>) -> Alpha<Color<T>,T> {
                    Alpha {
                        color: Color::$variant(color.color),
                        alpha: color.alpha,
                    }
                }
            }

            $($(
                impl<T:Float> From<$representations<T>> for Color<T> {
                    fn from(color: $representations<T>) -> Color<T> {
                        Color::$variant(color.into())
                    }
                }
            )+)*
        )+
    )
}

fn clamp<T:Float>(v: T, min: T, max: T) -> T {
    if v < min {
        min
    } else if v > max {
        max
    } else {
        v
    }
}

make_color! {
    ///Linear luminance.
    Luma {
        ///Linear luminance.
        y(luma: T)[alpha: T] => new;

        ///Linear luminance from an 8 bit value.
        y_u8(luma: u8)[alpha: u8] => new_u8;
    }

    ///Linear RGB.
    Rgb and Srgb, GammaRgb {
        ///Linear RGB.
        rgb(red: T, green: T, blue: T)[alpha: T] => new;

        ///Linear RGB from 8 bit values.
        rgb_u8(red: u8, green: u8, blue: u8)[alpha: u8] => new_u8;
    }

    ///CIE 1931 XYZ.
    Xyz {
        ///CIE XYZ.
        xyz(x: T, y: T, z: T)[alpha: T] => new;
    }

    ///CIE 1931 Yxy.
    Yxy {
        ///CIE Yxy.
        yxy(x: T, y: T, luma: T)[alpha: T] => new;
    }

    ///CIE L*a*b* (CIELAB).
    Lab {
        ///CIE L*a*b*.
        lab(l: T, a: T, b: T)[alpha: T] => new;
    }

    ///CIE L*C*h°, a polar version of CIE L*a*b*.
    Lch {
        ///CIE L*C*h°.
        lch(l: T, chroma: T, hue: LabHue<T>)[alpha: T] => new;
    }

    ///Linear HSV, a cylindrical version of RGB.
    Hsv {
        ///Linear HSV.
        hsv(hue: RgbHue<T>, saturation: T, value: T)[alpha: T] => new;
    }

    ///Linear HSL, a cylindrical version of RGB.
    Hsl {
        ///Linear HSL.
        hsl(hue: RgbHue<T>, saturation: T, lightness: T)[alpha: T] => new;
    }

    ///Linear HWB, an intuitive cylindrical version of RGB.
    Hwb {
        ///Linear HWB.
        hwb(hue: RgbHue<T>, whiteness: T, balckness: T)[alpha: T] => new;
    }
}

///A trait for clamping and checking if colors are within their ranges.
pub trait Limited {
    ///Check if the color's components are within the expected ranges.
    fn is_valid(&self) -> bool;

    ///Return a new color where the components has been clamped to the nearest
    ///valid values.
    fn clamp(&self) -> Self;

    ///Clamp the color's components to the nearest valid values.
    fn clamp_self(&mut self);
}

///A trait for linear color interpolation.
///
///```
///use palette::{Rgb, Mix};
///
///let a = Rgb::new(0.0, 0.5, 1.0);
///let b = Rgb::new(1.0, 0.5, 0.0);
///
///assert_eq!(a.mix(&b, 0.0), a);
///assert_eq!(a.mix(&b, 0.5), Rgb::new(0.5, 0.5, 0.5));
///assert_eq!(a.mix(&b, 1.0), b);
///```
pub trait Mix {
    ///The type of the mixing factor.
    type Scalar: Float;

    ///Mix the color with an other color, by `factor`.
    ///
    ///`factor` sould be between `0.0` and `1.0`, where `0.0` will result in
    ///the same color as `self` and `1.0` will result in the same color as
    ///`other`.
    fn mix(&self, other: &Self, factor: Self::Scalar) -> Self;
}

///The `Shade` trait allows a color to be lightened or darkened.
///
///```
///use palette::{Rgb, Shade};
///
///let a = Rgb::new(0.4, 0.4, 0.4);
///let b = Rgb::new(0.6, 0.6, 0.6);
///
///assert_eq!(a.lighten(0.1), b.darken(0.1));
///```
pub trait Shade: Sized {
    ///The type of the lighten/darken amount.
    type Scalar: Float;

    ///Lighten the color by `amount`.
    fn lighten(&self, amount: Self::Scalar) -> Self;

    ///Darken the color by `amount`.
    fn darken(&self, amount: Self::Scalar) -> Self {
        self.lighten(-amount)
    }
}

///A trait for colors where a hue may be calculated.
///
///```
///use palette::{Rgb, GetHue};
///
///let red = Rgb::new(1.0f32, 0.0, 0.0);
///let green = Rgb::new(0.0f32, 1.0, 0.0);
///let blue = Rgb::new(0.0f32, 0.0, 1.0);
///let gray = Rgb::new(0.5f32, 0.5, 0.5);
///
///assert_eq!(red.get_hue(), Some(0.0.into()));
///assert_eq!(green.get_hue(), Some(120.0.into()));
///assert_eq!(blue.get_hue(), Some(240.0.into()));
///assert_eq!(gray.get_hue(), None);
///```
pub trait GetHue {
    ///The kind of hue unit this color space uses.
    ///
    ///The hue is most commonly calculated as an angle around a color circle
    ///and may not always be uniform between color spaces. It's therefore not
    ///recommended to take one type of hue and apply it to a color space that
    ///expects an other.
    type Hue;

    ///Calculate a hue if possible.
    ///
    ///Colors in the gray scale has no well defined hue and should preferably
    ///return `None`.
    fn get_hue(&self) -> Option<Self::Hue>;
}

///A trait for colors where the hue can be manipulated without conversion.
pub trait Hue: GetHue {
    ///Return a new copy of `self`, but with a specific hue.
    fn with_hue(&self, hue: Self::Hue) -> Self;

    ///Return a new copy of `self`, but with the hue shifted by `amount`.
    fn shift_hue(&self, amount: Self::Hue) -> Self;
}

///A trait for colors where the saturation (or chroma) can be manipulated
///without conversion.
///
///```
///use palette::{Hsv, Saturate};
///
///let a = Hsv::new(0.0.into(), 0.25, 1.0);
///let b = Hsv::new(0.0.into(), 1.0, 1.0);
///
///assert_eq!(a.saturate(1.0), b.desaturate(0.5));
///```
pub trait Saturate: Sized {
    ///The type of the (de)saturation factor.
    type Scalar: Float;

    ///Increase the saturation by `factor`.
    fn saturate(&self, factor: Self::Scalar) -> Self;

    ///Decrease the saturation by `factor`.
    fn desaturate(&self, factor: Self::Scalar) -> Self {
        self.saturate(-factor)
    }
}

///Perform a unary or binary operation on each component of a color.
pub trait ComponentWise {
    ///The scalar type for color components.
    type Scalar: Float;

    ///Perform a binary operation on this and an other color.
    fn component_wise<F: FnMut(Self::Scalar, Self::Scalar) -> Self::Scalar>(&self, other: &Self, f: F) -> Self;

    ///Perform a unary operation on this color.
    fn component_wise_self<F: FnMut(Self::Scalar) -> Self::Scalar>(&self, f: F) -> Self;
}

///A convenience function to convert a constant number to Float Type
fn flt<T: num::Float, P: ToPrimitive>(prim: P) -> T {
    NumCast::from(prim).unwrap()
}