1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
use crate::lz4_jblock_decompress::lz4_jblock_decompress;
use crate::xxhash32::XXHash32;
use byteorder::{LittleEndian, ReadBytesExt};
use core::cmp;
use std::io::{self, BufRead, Error, ErrorKind, Read};

/// This reader is for files that can be read by:

/// https://github.com/lz4/lz4-java/blob/master/src/java/net/jpountz/lz4/LZ4BlockInputStream.java

/// It's unclear if anything else can actually read/write in this format, but unfortunately

/// we have to be able to read files written in this format.


// minimal one is just 64 bytes, but we will allocate 64kb - the default size Java writer uses,

// since that seems to be the most common source of the LZ4Block lz4 files

const LZ4_BLOCK_STARTING_BUF_SIZE: usize = 64 * 1024;

const DEFAULT_SEED: u32 = 0x9747b28c;

pub struct Lz4JBlockReader<R> {
    inner: R,
    buf_compressed: Vec<u8>,
    buf_decompressed: Vec<u8>,
    pos: usize,
    cap: usize,
    stop_after_empty_block: bool,
    saw_empty_block: bool,
    check_checksum: bool,
}

impl<R: Read> Lz4JBlockReader<R> {
    pub fn new(
        reader: R,
        stop_after_empty_block: bool,
        check_checksum: bool,
    ) -> Lz4JBlockReader<R> {
        Lz4JBlockReader {
            inner: reader,
            buf_compressed: vec![0; LZ4_BLOCK_STARTING_BUF_SIZE],
            buf_decompressed: vec![0; LZ4_BLOCK_STARTING_BUF_SIZE],
            pos: 0,
            cap: 0,
            stop_after_empty_block,
            saw_empty_block: false,
            check_checksum,
        }
    }

    fn fill_buf_decompressed(&mut self) -> io::Result<()> {
        assert_eq!(self.pos, self.cap);

        if self.stop_after_empty_block && self.saw_empty_block {
            self.pos = 0;
            self.cap = 0;
            return Ok(());
        }

        // looking for 'L', if there is EOF, then we are done

        let magic_z = match self.inner.read_u8() {
            Ok(b) => b,
            Err(err) => {
                return if err.kind() == ErrorKind::UnexpectedEof {
                    self.pos = 0;
                    self.cap = 0;
                    Ok(())
                } else {
                    Err(err)
                }
            }
        };
        if magic_z != b'L' {
            return Err(Error::new(ErrorKind::InvalidData, "wrong lz4 magic"));
        }

        let mut magic_leftovers = [0 as u8; 7];
        self.inner.read_exact(&mut magic_leftovers)?;
        if &magic_leftovers != b"Z4Block" {
            return Err(Error::new(ErrorKind::InvalidData, "wrong lz4 magic"));
        }

        let token = self.inner.read_u8()?;
        let compression_method = token & 0xF0;
        let compression_level = 10 + (token & 0x0F);
        let max_decompressed_buf_len = (1 as usize) << compression_level;
        let chunk_length = self.inner.read_u32::<LittleEndian>()? as usize;
        let original_length = self.inner.read_u32::<LittleEndian>()? as usize;
        let original_checksum = self.inner.read_u32::<LittleEndian>()?;

        if chunk_length == 0 {
            if original_length != 0 {
                return Err(Error::new(
                    ErrorKind::InvalidData,
                    "lz4 compressed chunk is empty, but decompressed one is not",
                ));
            }
            if original_checksum != 0 {
                return Err(Error::new(
                    ErrorKind::InvalidData,
                    "lz4 block is empty, but checksum is not 0",
                ));
            }

            self.saw_empty_block = true;

            return if self.stop_after_empty_block {
                self.pos = 0;
                self.cap = 0;
                Ok(())
            } else {
                self.fill_buf_decompressed()
            };
        }

        if original_length > max_decompressed_buf_len {
            return Err(Error::new(
                ErrorKind::InvalidData,
                "lz4 decompressed buf length mismatch",
            ));
        }

        if self.buf_decompressed.capacity() < original_length {
            self.buf_decompressed.resize(max_decompressed_buf_len, 0);
        }

        match compression_method {
            0x10 => {
                // uncompressed chunk

                if original_length != chunk_length {
                    return Err(Error::new(
                        ErrorKind::InvalidData,
                        "lz4 uncompressed chunk length not equal original length",
                    ));
                }

                let buf_decompressed_capped = &mut self.buf_decompressed[..chunk_length];
                self.inner.read_exact(buf_decompressed_capped)?;

                self.pos = 0;
                self.cap = chunk_length;
            }
            0x20 => {
                // compressed chunk

                if self.buf_compressed.capacity() < chunk_length {
                    self.buf_compressed
                        .resize(max_decompressed_buf_len.max(chunk_length), 0);
                }

                let buf_compressed_capped = &mut self.buf_compressed[..chunk_length];
                self.inner.read_exact(buf_compressed_capped)?;

                let buf_decompressed_capped = &mut self.buf_decompressed[..original_length];
                let buf_compressed_capped = buf_compressed_capped.as_ref();

                let decompressed_length =
                    lz4_jblock_decompress(buf_compressed_capped, buf_decompressed_capped)?;
                assert_eq!(original_length, decompressed_length);

                self.pos = 0;
                self.cap = decompressed_length;
            }
            _ => {
                return Err(Error::new(
                    ErrorKind::InvalidData,
                    "unknown lz4 compression method",
                ));
            }
        };

        if self.check_checksum {
            let mut xxhash32 = XXHash32::new(DEFAULT_SEED);
            xxhash32.update(&self.buf_decompressed[..self.cap]);
            let computed_checksum = xxhash32.digest() & 0x0FFFFFFFu32;

            if original_checksum != computed_checksum {
                return Err(Error::new(ErrorKind::InvalidData, "lz4 checksum mismatch"));
            }
        }

        Ok(())
    }
}

impl<R: Read> Read for Lz4JBlockReader<R> {
    fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
        let bytes_read = {
            let mut rem = self.fill_buf()?;
            rem.read(buf)?
        };
        self.consume(bytes_read);
        Ok(bytes_read)
    }
}

impl<R: Read> BufRead for Lz4JBlockReader<R> {
    fn fill_buf(&mut self) -> io::Result<&[u8]> {
        // If we've reached the end of our internal buffer then we need to fetch

        // some more data from the underlying reader.

        // Branch using `>=` instead of the more correct `==`

        // to tell the compiler that the pos..cap slice is always valid.

        if self.pos >= self.cap {
            self.fill_buf_decompressed()?;
        }
        Ok(&self.buf_decompressed[self.pos..self.cap])
    }

    fn consume(&mut self, amt: usize) {
        self.pos = cmp::min(self.pos + amt, self.cap);
    }
}