1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
//! A [`PackedVec`](struct.PackedVec.html) stores vectors of integers efficiently while providing
//! a API similar to `Vec`.
//!
//! The main documentation for this crate can be found in the [`PackedVec`](struct.PackedVec.html)
//! struct.

extern crate num_traits;

#[cfg(feature = "serde")]
#[macro_use]
extern crate serde;

use num_traits::{cast::FromPrimitive, AsPrimitive, PrimInt, ToPrimitive, Unsigned};
use std::{
    cmp::Ord,
    fmt::Debug,
    hash::{Hash, Hasher},
    mem::size_of,
};

/// A [`PackedVec`](struct.PackedVec.html) stores vectors of integers efficiently while providing
/// an API similar to `Vec`. The basic idea is to store each element using the minimum number of
/// bits needed to represent every element in the `Vec`. For example, if we have a `Vec<u64>` with
/// elements [20, 30, 140], every element wastes most of its 64 bits: 7 bits is sufficient to
/// represent the range of elements in the vector. Given this input vector, `PackedVec` stores each
/// elements using exactly 7 bits, saving substantial memory. For vectors which often contain small
/// ranges of numbers, and which are created rarely, but read from frequently, this can be a
/// significant memory and performance win.
///
/// # Examples
///
/// `PackedVec` has two main API differences from `Vec`: a `PackedVec` is created from a `Vec`; and
/// a `PackedVec` returns values rather than references. Both points can be seen in this example:
///
/// ```rust
/// use packedvec::PackedVec;
/// let v = vec![-1, 30, 120];
/// let pv = PackedVec::new(v.clone());
/// assert_eq!(pv.get(0), Some(-1));
/// assert_eq!(pv.get(2), Some(120));
/// assert_eq!(pv.get(3), None);
/// assert_eq!(v.iter().cloned().collect::<Vec<_>>(), pv.iter().collect::<Vec<_>>());
/// ```
///
/// ## Storage backing type
///
/// `PackedVec` defaults to using `usize` as a storage backing type. You can choose your own
/// storage type with the [`new_with_storaget()`](struct.PackedVec.html#method.new_with_storaget)
/// constructor. In general we recommend using the default `usize` backing storage unless you have
/// rigorously benchmarked your particular use case and are sure that a different storage type is
/// superior.
#[derive(Clone, Debug)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub struct PackedVec<T, StorageT = usize> {
    len: usize,
    bits: Vec<StorageT>,
    bwidth: usize,
    min: T,
}

impl<'a, T> PackedVec<T, usize>
where
    T: 'static + AsPrimitive<usize> + FromPrimitive + Ord + PrimInt + ToPrimitive,
    usize: AsPrimitive<T>,
{
    /// Constructs a new `PackedVec` from `vec`. The `PackedVec` has `usize` backing storage, which
    /// is likely to be the best choice in nearly all situations.
    pub fn new(vec: Vec<T>) -> Self {
        PackedVec::new_with_storaget(vec)
    }
}

impl<'a, T, StorageT> PackedVec<T, StorageT>
where
    T: 'static + AsPrimitive<StorageT> + FromPrimitive + Ord + PrimInt + ToPrimitive,
    StorageT: AsPrimitive<T> + PrimInt + Unsigned,
{
    /// Constructs a new `PackedVec` from `vec` (with a user-defined backing storage type).
    pub fn new_with_storaget(vec: Vec<T>) -> PackedVec<T, StorageT> {
        if size_of::<T>() > size_of::<StorageT>() {
            panic!("The backing storage type must be the same size or bigger as the stored integer size.");
        }

        // If the input vector was empty, we don't need to fill the backing storage with anything.
        if vec.is_empty() {
            return PackedVec {
                len: vec.len(),
                bits: vec![],
                bwidth: 0,
                min: T::zero(), // This value will never be used
            };
        };

        // We now want to find the difference between the biggest and smallest elements so that we
        // can pack things down as far as possible. In other words, if we have a vec [0, 4] the
        // range is 4 and we need 2 bits to represent that range; if we have a vec [-1, 1] the
        // range is 2 and we need 1 bit to represent that range.
        //
        // Perhaps surprisingly, it's faster to call iter().max() and iter().min() separately than
        // it is to write a single for loop over the input vector. This is probably because of the
        // overhead of an iterator, and perhaps because max() and min() use CPU vector
        // instructions.
        let max = *vec.iter().max().unwrap();
        let min = *vec.iter().min().unwrap();
        // If the input vector consisted entirely of the same element, we don't need to fill the
        // backing storage with anything.
        if max == min {
            return PackedVec {
                len: vec.len(),
                bits: vec![],
                bwidth: 0,
                // By definition "min" will be the value
                min,
            };
        };
        let bwidth = i_log2(delta(min, max));

        let mut bit_vec = vec![];
        let mut buf = StorageT::zero();
        let mut bit_count: usize = 0;
        for &e in &vec {
            let e = delta(min, e);
            if bit_count + bwidth < num_bits::<StorageT>() {
                let shifted_e = e << (num_bits::<StorageT>() - (bwidth + bit_count));
                buf = buf | shifted_e;
                bit_count += bwidth;
            } else {
                let remaining_bits = num_bits::<StorageT>() - bit_count;
                // add as many bits as possible before adding the remaining
                // bits to the next u64
                let first_half = e >> (bwidth - remaining_bits);
                // for example if width = 5 and remaining_bits = 3
                // e = 00101 -> add 001 to the buffer, insert buffer into
                // bit array and create a new buffer containing 01 00000000...
                buf = buf | first_half;
                bit_vec.push(buf);
                buf = StorageT::zero();
                bit_count = 0;
                if bwidth - remaining_bits > 0 {
                    let mask = (StorageT::one() << (bwidth - remaining_bits)) - StorageT::one();
                    let mut second_half = e & mask;
                    bit_count += bwidth - remaining_bits;
                    // add the second half of the number to the buffer
                    second_half = second_half << (num_bits::<StorageT>() - bit_count);
                    buf = buf | second_half;
                }
            }
        }
        if bit_count != 0 {
            bit_vec.push(buf);
        }

        PackedVec {
            len: vec.len(),
            bits: bit_vec,
            bwidth,
            min,
        }
    }

    /// Return the value at the specified `index`.
    ///
    /// # Example
    /// ```
    /// use packedvec::PackedVec;
    /// let v: Vec<u8> = vec![1, 2, 3, 4];
    /// let packedvec = PackedVec::new(v);
    /// let val: Option<u8> = packedvec.get(3);
    /// assert_eq!(val, Some(4));
    /// ```
    pub fn get(&self, index: usize) -> Option<T> {
        if index >= self.len {
            return None;
        }
        // Since we've checked the bounds above, the call to get_unchecked is safe.
        Some(unsafe { self.get_unchecked(index) })
    }

    /// Returns a reference to an element or subslice, without doing bounds checking.
    ///
    /// This is generally not recommended, use with caution! For a safe alternative see
    /// [`get()`](#method.get).
    ///
    /// # Safety
    ///
    /// The caller must ensure that the index specified does not exceed this
    /// `PackedVec`'s bound.
    ///
    /// # Example
    /// ```
    /// use packedvec::PackedVec;
    /// let v: Vec<u8> = vec![1, 2, 3, 4];
    /// let packedvec = PackedVec::new(v);
    /// assert_eq!(unsafe { packedvec.get_unchecked(3) }, 4);
    /// ```
    pub unsafe fn get_unchecked(&self, index: usize) -> T {
        let min = self.min;
        if self.bwidth == 0 {
            // The original vector consisted entirely of the same element.
            return min;
        }
        let item_index = (index * self.bwidth) / num_bits::<StorageT>();
        let start = (index * self.bwidth) % num_bits::<StorageT>();
        if start + self.bwidth < num_bits::<StorageT>() {
            let mask = ((StorageT::one() << self.bwidth) - StorageT::one())
                << (num_bits::<StorageT>() - self.bwidth - start);
            let item = (*self.bits.get_unchecked(item_index) & mask)
                >> (num_bits::<StorageT>() - self.bwidth - start);
            inv_delta(min, item)
        } else if self.bwidth == num_bits::<StorageT>() {
            inv_delta(min, *self.bits.get_unchecked(item_index))
        } else {
            let bits_written = num_bits::<StorageT>() - start;
            let mask = ((StorageT::one() << bits_written) - StorageT::one())
                << (num_bits::<StorageT>() - bits_written - start);
            let first_half = (*self.bits.get_unchecked(item_index) & mask)
                >> (num_bits::<StorageT>() - bits_written - start);
            // second half
            let remaining_bits = self.bwidth - bits_written;
            if remaining_bits > 0 {
                let mask = ((StorageT::one() << remaining_bits) - StorageT::one())
                    << (num_bits::<StorageT>() - remaining_bits);
                let second_half = (*self.bits.get_unchecked(item_index + 1) & mask)
                    >> (num_bits::<StorageT>() - remaining_bits);
                inv_delta(min, (first_half << remaining_bits) + second_half)
            } else {
                inv_delta(min, first_half)
            }
        }
    }

    /// Returns true if the `PackedVec` has no elements.
    ///
    /// # Example
    /// ```
    /// use packedvec::PackedVec;
    /// let v: Vec<u16> = vec![];
    /// let packedvec = PackedVec::new(v);
    /// assert_eq!(packedvec.is_empty(), true);
    /// let v: Vec<u16> = vec![1, 2, 3, 4];
    /// let packedvec = PackedVec::new(v);
    /// assert_eq!(packedvec.is_empty(), false);
    /// ```
    pub fn is_empty(&self) -> bool {
        self.len == 0
    }

    /// Return the number of elements in this `PackedVec`.
    ///
    /// # Example
    /// ```
    /// use packedvec::PackedVec;
    /// let v: Vec<u16> = vec![1, 2, 3, 4];
    /// let packedvec = PackedVec::new(v);
    /// assert_eq!(packedvec.len(), 4);
    /// ```
    pub fn len(&self) -> usize {
        self.len
    }

    /// How many bits does each packed element consume?
    ///
    /// # Example
    ///
    /// ```
    /// use packedvec::PackedVec;
    /// let packedvec = PackedVec::new(vec![1, 2, 3, 4]);
    /// assert_eq!(packedvec.bwidth(), 2);
    /// ```
    pub fn bwidth(&self) -> usize {
        self.bwidth
    }

    /// Returns an iterator over the `PackedVec`.
    pub fn iter(&'a self) -> PackedVecIter<'a, T, StorageT> {
        PackedVecIter {
            packedvec: self,
            idx: 0,
        }
    }
}

impl<T: PartialEq> PartialEq for PackedVec<T> {
    fn eq(&self, other: &Self) -> bool {
        if self.len != other.len || self.min != other.min || self.bwidth != other.bwidth {
            return false;
        }
        self.bits
            .iter()
            .zip(other.bits.iter())
            .all(|(b1, b2)| b1 == b2)
    }
}

impl<T: Debug + PartialEq> Eq for PackedVec<T> {}

impl<T: Debug + Hash> Hash for PackedVec<T> {
    fn hash<H: Hasher>(&self, state: &mut H) {
        for blk in self.bits.iter() {
            blk.hash(state);
        }
    }
}

#[derive(Debug)]
pub struct PackedVecIter<'a, T: 'a, StorageT: 'a> {
    packedvec: &'a PackedVec<T, StorageT>,
    idx: usize,
}

impl<'a, T, StorageT> Iterator for PackedVecIter<'a, T, StorageT>
where
    T: 'static + AsPrimitive<StorageT> + FromPrimitive + Ord + PrimInt + ToPrimitive,
    StorageT: AsPrimitive<T> + PrimInt + Unsigned,
{
    type Item = T;

    fn next(&mut self) -> Option<Self::Item> {
        self.idx += 1;
        self.packedvec.get(self.idx - 1)
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        let ub = self.packedvec.len() - self.idx; // upper bound
        (ub, Some(ub))
    }
}

/// How many bits does this type represent?
fn num_bits<T>() -> usize {
    size_of::<T>() * 8
}

/// Convert (possibly signed) `x` of type `T` into an unsigned `StorageT`.
fn abs<T, StorageT>(x: T) -> StorageT
where
    T: 'static + AsPrimitive<StorageT> + FromPrimitive + Ord + PrimInt + ToPrimitive,
    StorageT: AsPrimitive<T> + PrimInt + Unsigned,
{
    debug_assert!(size_of::<StorageT>() >= size_of::<T>());
    // These three clauses are not easy to understand, because they can deal with both signed and
    // unsigned types. The first clause *always* matches against unsigned types. It also matches
    // sometimes against signed types. The second and third clauses can only ever match against
    // signed types.
    if x >= T::zero() {
        x.as_()
    } else if x == T::min_value() {
        T::max_value().as_() + StorageT::one()
    } else {
        (T::zero() - x).as_()
    }
}

/// Return the delta between `min` and `max` as an unsigned integer (i.e. delta(-2, 2) == 4).
fn delta<T, StorageT>(min: T, max: T) -> StorageT
where
    T: 'static + AsPrimitive<StorageT> + FromPrimitive + Ord + PrimInt + ToPrimitive,
    StorageT: AsPrimitive<T> + PrimInt + Unsigned,
{
    debug_assert!(size_of::<StorageT>() >= size_of::<T>());
    // These three clauses are not easy to understand, because they can deal with both signed and
    // unsigned types. The first clause *always* matches against unsigned types. It also matches
    // sometimes against signed types. The second and third clauses can only ever match against
    // signed types.
    if min >= T::zero() {
        (max - min).as_()
    } else if min < T::zero() && max < T::zero() {
        abs(max - min)
    } else {
        debug_assert!(min < T::zero());
        max.as_() + abs(min)
    }
}

/// Given a (possibly signed) minimum value `min` and an absolute delta `d`, return a (possibly)
/// signed inverted value (i.e. inv_delta(-2, 4) == 2).
fn inv_delta<T, StorageT>(min: T, d: StorageT) -> T
where
    T: 'static + AsPrimitive<StorageT> + FromPrimitive + Ord + PrimInt + ToPrimitive,
    StorageT: AsPrimitive<T> + PrimInt + Unsigned,
{
    debug_assert!(size_of::<StorageT>() >= size_of::<T>());
    // These three clauses are not easy to understand, because they can deal with both signed and
    // unsigned types. The first clause *always* matches against unsigned types. It also matches
    // sometimes against signed types. The second and third clauses can only ever match against
    // signed types.
    if d <= T::max_value().as_() {
        min + d.as_()
    } else if d == abs(T::min_value()) + abs(T::max_value()) {
        debug_assert!(min == T::min_value());
        T::max_value()
    } else {
        min + T::max_value() + (d - T::max_value().as_()).as_()
    }
}

fn i_log2<T: PrimInt + Unsigned>(n: T) -> usize {
    size_of::<T>() * 8 - n.leading_zeros() as usize
}

#[cfg(test)]
mod tests {
    extern crate rand;
    use self::rand::Rand;
    use super::*;

    #[test]
    fn empty_vec() {
        let v: Vec<u16> = vec![];
        let packed_v = PackedVec::new(v);
        assert_eq!(packed_v.len(), 0);
        assert_eq!(packed_v.bwidth(), 0);
        assert_eq!(packed_v.bits, vec![]);
        let mut iter = packed_v.iter();
        assert_eq!(iter.idx, 0);
        assert_eq!(iter.next(), None);
    }

    #[test]
    fn all_values_fit_in_one_item() {
        let v: Vec<u16> = vec![0, 2, 3];
        let v_len = v.len();
        let packed_v = PackedVec::<u16, u64>::new_with_storaget(v.clone());
        assert_eq!(packed_v.len(), v_len);
        assert_eq!(packed_v.bwidth(), 2);
        assert_eq!(packed_v.bits, vec![3170534137668829184]);
        let mut iter = packed_v.iter();
        for number in v {
            assert_eq!(iter.next(), Some(number));
        }
        assert_eq!(iter.next(), None);
    }

    #[test]
    fn value_spanning_two_items() {
        let v = vec![0, 4294967296, 2, 3, 4294967296, 5];
        let v_len = v.len();
        let packed_v = PackedVec::<u64, u64>::new_with_storaget(v.clone());
        assert_eq!(packed_v.len(), v_len);
        assert_eq!(packed_v.bwidth(), 33);
        assert_eq!(
            packed_v.bits,
            vec![
                1073741824,
                1073741824,
                4035225266123964416,
                1441151880758558720
            ]
        );
        for (&orig, packed) in v.iter().zip(packed_v.iter()) {
            assert_eq!(orig, packed);
        }
    }

    #[test]
    fn values_fill_bwidth() {
        let v: Vec<usize> = vec![1, 2, 9223372036854775808, 100, 0, 3];
        let v_len = v.len();
        let packed_v = PackedVec::new(v.clone());
        assert_eq!(packed_v.len(), v_len);
        assert_eq!(packed_v.bwidth(), 64);
        assert_eq!(packed_v.bits, v);
        let mut iter = packed_v.iter();
        for number in v {
            assert_eq!(iter.next(), Some(number));
        }
        assert_eq!(iter.next(), None);
    }

    #[test]
    fn vec_u8() {
        let v: Vec<u8> = vec![255, 2, 255];
        let v_len = v.len();
        let packed_v = PackedVec::new(v.clone());
        assert_eq!(packed_v.len(), v_len);
        let mut iter = packed_v.iter();
        for number in v {
            let value: Option<u8> = iter.next();
            assert_eq!(value, Some(number));
        }
        assert_eq!(iter.next(), None);
    }

    #[test]
    fn vec_u16() {
        let v: Vec<u16> = vec![1, 2, 65535];
        let v_len = v.len();
        let packed_v = PackedVec::new(v.clone());
        assert_eq!(packed_v.len(), v_len);
        let mut iter = packed_v.iter();
        for number in v {
            let value: Option<u16> = iter.next();
            assert_eq!(value, Some(number));
        }
        assert_eq!(iter.next(), None);
    }

    #[test]
    fn vec_u32() {
        let v: Vec<u32> = vec![1, 4294967295, 2, 100, 65535];
        let v_len = v.len();
        let packed_v = PackedVec::new(v.clone());
        assert_eq!(packed_v.len(), v_len);
        let mut iter = packed_v.iter();
        for number in v {
            let value: Option<u32> = iter.next();
            assert_eq!(value, Some(number));
        }
        assert_eq!(iter.next(), None);
    }

    #[test]
    fn vec_u64() {
        let v: Vec<u64> = vec![
            1,
            4294967295,
            18446744073709551615,
            100,
            18446744073709551613,
            65535,
        ];
        let v_len = v.len();
        let packed_v = PackedVec::new(v.clone());
        assert_eq!(packed_v.len(), v_len);
        let mut iter = packed_v.iter();
        for number in v {
            let value: Option<u64> = iter.next();
            assert_eq!(value, Some(number));
        }
        assert_eq!(iter.next(), None);
    }

    fn random_unsigned_ints<T, StorageT>()
    where
        T: 'static
            + AsPrimitive<StorageT>
            + FromPrimitive
            + Ord
            + PrimInt
            + Rand
            + ToPrimitive
            + Unsigned,
        StorageT: AsPrimitive<T> + PrimInt + Unsigned,
    {
        const LENGTH: usize = 100000;
        let mut v: Vec<T> = Vec::with_capacity(LENGTH);
        for _ in 0..(LENGTH + 1) {
            v.push(rand::random::<T>());
        }
        let packed_v = PackedVec::<T, StorageT>::new_with_storaget(v.clone());
        assert_eq!(packed_v.len(), v.len());
        assert!(packed_v.iter().zip(v.iter()).all(|(x, y)| x == *y));
    }

    #[test]
    fn random_vec() {
        random_unsigned_ints::<u8, u8>();
        random_unsigned_ints::<u8, u16>();
        random_unsigned_ints::<u8, u32>();
        random_unsigned_ints::<u8, u64>();
        random_unsigned_ints::<u16, u16>();
        random_unsigned_ints::<u16, u32>();
        random_unsigned_ints::<u16, u64>();
        random_unsigned_ints::<u32, u32>();
        random_unsigned_ints::<u32, u64>();
        random_unsigned_ints::<u64, u64>();
    }

    #[test]
    #[should_panic]
    fn t_must_not_be_bigger_than_storaget() {
        PackedVec::<u16, u8>::new_with_storaget(vec![0]);
    }

    #[test]
    fn vecs_with_only_one_value() {
        let pv = PackedVec::new(vec![0u16, 0u16]);
        assert_eq!(pv.bits.len(), 0);
        assert_eq!(pv.get(0), Some(0));
        assert_eq!(pv.get(1), Some(0));
        assert_eq!(pv.get(2), None);
        assert_eq!(pv.iter().collect::<Vec<u16>>(), vec![0, 0]);

        let pv = PackedVec::new(vec![u16::max_value(), u16::max_value()]);
        assert_eq!(pv.bits.len(), 0);
        assert_eq!(
            pv.iter().collect::<Vec<u16>>(),
            vec![u16::max_value(), u16::max_value()]
        );
    }

    #[test]
    fn zero_bits_spanning_across_elements() {
        let v: Vec<u64> = vec![0, 5, 17, 17, 6, 3, 25, 29, 10, 0, 10, 0, 2];
        let v_len = v.len();
        let pv = PackedVec::new(v.clone());
        assert_eq!(pv.len(), v_len);
        let mut iter = pv.iter();
        for number in v {
            let value: Option<u64> = iter.next();
            assert_eq!(value, Some(number));
        }
        assert_eq!(iter.next(), None);
    }

    #[test]
    fn test_delta() {
        // The trickiness here almost entirely relates to negative maximum values for signed
        // integer types
        assert_eq!(delta::<u8, u8>(0, 2), 2);
        assert_eq!(delta::<u8, u8>(0, u8::max_value()), u8::max_value());
        assert_eq!(delta::<i8, u8>(-2, 0), 2);
        assert_eq!(delta::<i8, u8>(-2, 2), 4);
        assert_eq!(delta::<i8, u8>(-2, -1), 1);
        assert_eq!(delta::<i8, u8>(i8::min_value(), 0), 128);
        assert_eq!(delta::<i8, u8>(0, i8::max_value()), 127);
        assert_eq!(
            delta::<i8, u8>(i8::min_value(), i8::max_value()),
            u8::max_value()
        );
        assert_eq!(delta::<i8, u8>(i8::min_value(), i8::min_value()), 0);
        assert_eq!(
            delta::<i32, u32>(i32::min_value(), i32::max_value()),
            (i32::max_value() as u32) * 2 + 1
        );
        assert_eq!(
            delta::<i32, usize>(i32::min_value(), i32::max_value()),
            (i32::max_value() as usize) * 2 + 1
        );
    }

    #[test]
    fn test_inv_delta() {
        // These tests are, in essence, those from delta with the last two values swapped (i.e.
        // assert_eq!(delta(x, y), z) becomes assert_eq!(inv_delta(x, z), y).
        assert_eq!(inv_delta::<u8, u8>(0, 2), 2);
        assert_eq!(inv_delta::<u8, u8>(0, u8::max_value()), u8::max_value());
        assert_eq!(inv_delta::<i8, u8>(-2, 2), 0);
        assert_eq!(inv_delta::<i8, u8>(-2, 4), 2);
        assert_eq!(inv_delta::<i8, u8>(-2, 1), -1);
        assert_eq!(inv_delta::<i8, u8>(i8::min_value(), 128), 0);
        assert_eq!(inv_delta::<i8, u8>(0, 127), i8::max_value());
        assert_eq!(
            inv_delta::<i8, u8>(i8::min_value(), u8::max_value()),
            i8::max_value()
        );
        assert_eq!(inv_delta::<i8, u8>(i8::min_value(), 0), i8::min_value());
        assert_eq!(
            inv_delta::<i32, u32>(i32::min_value(), ((i32::max_value() as u32) * 2 + 1).as_()),
            i32::max_value()
        );
        assert_eq!(
            inv_delta::<i32, usize>(
                i32::min_value(),
                ((i32::max_value() as usize) * 2 + 1).as_()
            ),
            i32::max_value()
        );
    }

    #[test]
    fn efficient_range() {
        let pv = PackedVec::new(vec![9998, 9999, 10000]);
        assert_eq!(pv.bwidth(), 2);
        assert_eq!(pv.iter().collect::<Vec<_>>(), vec![9998, 9999, 10000]);
    }

    #[test]
    fn negative_values() {
        let pv = PackedVec::new(vec![-1, 1]);
        assert_eq!(pv.iter().collect::<Vec<_>>(), vec![-1, 1]);

        let pv = PackedVec::new(vec![i32::min_value(), 1]);
        assert_eq!(pv.iter().collect::<Vec<_>>(), vec![i32::min_value(), 1]);

        let pv = PackedVec::<i32, u32>::new_with_storaget(vec![i32::min_value(), i32::max_value()]);
        assert_eq!(
            pv.iter().collect::<Vec<_>>(),
            vec![i32::min_value(), i32::max_value()]
        );

        let pv = PackedVec::new(vec![-2, -1, 0]);
        assert_eq!(pv.iter().collect::<Vec<_>>(), vec![-2, -1, 0]);
    }

    #[test]
    fn test_eq() {
        assert_eq!(PackedVec::<u8>::new(vec![]), PackedVec::new(vec![]));
        assert_eq!(PackedVec::new(vec![0]), PackedVec::new(vec![0]));
        assert_eq!(PackedVec::new(vec![4, 10]), PackedVec::new(vec![4, 10]));
        assert_eq!(
            PackedVec::new(vec![u32::max_value(), u32::min_value()]),
            PackedVec::new(vec![u32::max_value(), u32::min_value()])
        );
        assert_ne!(PackedVec::new(vec![1, 4]), PackedVec::new(vec![0, 3]));
    }
}