1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
#![no_std]
#![cfg_attr(docsrs, feature(doc_auto_cfg))]
#![doc = include_str!("../README.md")]
#![doc(
    html_logo_url = "https://raw.githubusercontent.com/RustCrypto/meta/master/logo.svg",
    html_favicon_url = "https://raw.githubusercontent.com/RustCrypto/meta/master/logo.svg"
)]
#![forbid(unsafe_code)]
#![warn(
    clippy::mod_module_files,
    clippy::unwrap_used,
    missing_docs,
    rust_2018_idioms,
    unused_lifetimes,
    unused_qualifications
)]

//! ## `serde` support
//!
//! When the `serde` feature of this crate is enabled, `Serialize` and
//! `Deserialize` are impl'd for the following types:
//!
//! - [`AffinePoint`]
//! - [`Scalar`]
//! - [`ecdsa::VerifyingKey`]
//!
//! Please see type-specific documentation for more information.

#[cfg(feature = "arithmetic")]
mod arithmetic;

#[cfg(feature = "ecdh")]
pub mod ecdh;

#[cfg(feature = "ecdsa-core")]
pub mod ecdsa;

#[cfg(any(feature = "test-vectors", test))]
pub mod test_vectors;

pub use elliptic_curve::{self, bigint::U256, consts::U32};

#[cfg(feature = "arithmetic")]
pub use arithmetic::{scalar::Scalar, AffinePoint, ProjectivePoint};

#[cfg(feature = "expose-field")]
pub use arithmetic::field::FieldElement;

#[cfg(feature = "pkcs8")]
pub use elliptic_curve::pkcs8;

use elliptic_curve::{
    bigint::ArrayEncoding, consts::U33, generic_array::GenericArray, FieldBytesEncoding,
};

/// Order of NIST P-256's elliptic curve group (i.e. scalar modulus) serialized
/// as hexadecimal.
///
/// ```text
/// n = FFFFFFFF 00000000 FFFFFFFF FFFFFFFF BCE6FAAD A7179E84 F3B9CAC2 FC632551
/// ```
///
/// # Calculating the order
/// One way to calculate the order is with `GP/PARI`:
///
/// ```text
/// p = (2^224) * (2^32 - 1) + 2^192 + 2^96 - 1
/// b = 41058363725152142129326129780047268409114441015993725554835256314039467401291
/// E = ellinit([Mod(-3, p), Mod(b, p)])
/// default(parisize, 120000000)
/// n = ellsea(E)
/// isprime(n)
/// ```
const ORDER_HEX: &str = "ffffffff00000000ffffffffffffffffbce6faada7179e84f3b9cac2fc632551";

/// NIST P-256 elliptic curve.
///
/// This curve is also known as prime256v1 (ANSI X9.62) and secp256r1 (SECG)
/// and is specified in [NIST SP 800-186]:
/// Recommendations for Discrete Logarithm-based Cryptography:
/// Elliptic Curve Domain Parameters.
///
/// It's included in the US National Security Agency's "Suite B" and is widely
/// used in protocols like TLS and the associated X.509 PKI.
///
/// Its equation is `y² = x³ - 3x + b` over a ~256-bit prime field where `b` is
/// the "verifiably random"† constant:
///
/// ```text
/// b = 41058363725152142129326129780047268409114441015993725554835256314039467401291
/// ```
///
/// † *NOTE: the specific origins of this constant have never been fully disclosed
///   (it is the SHA-1 digest of an unknown NSA-selected constant)*
///
/// [NIST SP 800-186]: https://csrc.nist.gov/publications/detail/sp/800-186/final
#[derive(Copy, Clone, Debug, Default, Eq, PartialEq, PartialOrd, Ord)]
pub struct NistP256;

impl elliptic_curve::Curve for NistP256 {
    /// 32-byte serialized field elements.
    type FieldBytesSize = U32;

    /// 256-bit integer type used for internally representing field elements.
    type Uint = U256;

    /// Order of NIST P-256's elliptic curve group (i.e. scalar modulus).
    const ORDER: U256 = U256::from_be_hex(ORDER_HEX);
}

impl elliptic_curve::PrimeCurve for NistP256 {}

impl elliptic_curve::point::PointCompression for NistP256 {
    /// NIST P-256 points are typically uncompressed.
    const COMPRESS_POINTS: bool = false;
}

impl elliptic_curve::point::PointCompaction for NistP256 {
    /// NIST P-256 points are typically uncompressed.
    const COMPACT_POINTS: bool = false;
}

#[cfg(feature = "jwk")]
impl elliptic_curve::JwkParameters for NistP256 {
    const CRV: &'static str = "P-256";
}

#[cfg(feature = "pkcs8")]
impl pkcs8::AssociatedOid for NistP256 {
    const OID: pkcs8::ObjectIdentifier = pkcs8::ObjectIdentifier::new_unwrap("1.2.840.10045.3.1.7");
}

/// Blinded scalar.
#[cfg(feature = "arithmetic")]
pub type BlindedScalar = elliptic_curve::scalar::BlindedScalar<NistP256>;

/// Compressed SEC1-encoded NIST P-256 curve point.
pub type CompressedPoint = GenericArray<u8, U33>;

/// NIST P-256 SEC1 encoded point.
pub type EncodedPoint = elliptic_curve::sec1::EncodedPoint<NistP256>;

/// NIST P-256 field element serialized as bytes.
///
/// Byte array containing a serialized field element value (base field or scalar).
pub type FieldBytes = elliptic_curve::FieldBytes<NistP256>;

impl FieldBytesEncoding<NistP256> for U256 {
    fn decode_field_bytes(field_bytes: &FieldBytes) -> Self {
        U256::from_be_byte_array(*field_bytes)
    }

    fn encode_field_bytes(&self) -> FieldBytes {
        self.to_be_byte_array()
    }
}

/// Non-zero NIST P-256 scalar field element.
#[cfg(feature = "arithmetic")]
pub type NonZeroScalar = elliptic_curve::NonZeroScalar<NistP256>;

/// NIST P-256 public key.
#[cfg(feature = "arithmetic")]
pub type PublicKey = elliptic_curve::PublicKey<NistP256>;

/// NIST P-256 secret key.
pub type SecretKey = elliptic_curve::SecretKey<NistP256>;

#[cfg(not(feature = "arithmetic"))]
impl elliptic_curve::sec1::ValidatePublicKey for NistP256 {}

/// Bit representation of a NIST P-256 scalar field element.
#[cfg(feature = "bits")]
pub type ScalarBits = elliptic_curve::scalar::ScalarBits<NistP256>;

#[cfg(feature = "voprf")]
impl elliptic_curve::VoprfParameters for NistP256 {
    /// See <https://www.ietf.org/archive/id/draft-irtf-cfrg-voprf-19.html#section-4.3>.
    const ID: &'static str = "P256-SHA256";

    /// See <https://www.ietf.org/archive/id/draft-irtf-cfrg-voprf-08.html#section-4.3-1.2>.
    type Hash = sha2::Sha256;
}