1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
use std::marker::PhantomData;
use std::ops::{Add, AddAssign, Div};

use ego_tree::{NodeId, NodeMut, Tree};
use num_traits::{ToPrimitive, Zero};
use rand::{thread_rng, Rng};

use crate::aliases::{LazyMctsNode, LazyMctsTree};
use crate::mcts_node::MctsNode;
use crate::traits::{BackPropPolicy, GameTrait, LazyTreePolicy, Playout};
use crate::{uct_value, Evaluator, Nat, Num};
use rand::prelude::SliceRandom;

/// A default backprop policy it will take the reward of the simulation and backkpropagate the
/// result  to the branch nodes.
pub struct DefaultBackProp;

impl<
    T: Clone,
    Move: Clone,
    R: Add + AddAssign + Div + Clone + Zero + ToPrimitive,
    A: Clone + Default,
> BackPropPolicy<T, Move, R, A> for DefaultBackProp
{
    fn backprop(tree: &mut Tree<MctsNode<T, Move, R, A>>, leaf: NodeId, reward: R) {
        let root_id = tree.root().id();
        let mut current_node_id = leaf;
        // Update the branch
        while current_node_id != root_id {
            let mut node_to_update = tree.get_mut(current_node_id).unwrap();
            node_to_update.value().n_visits += 1;
            node_to_update.value().sum_rewards =
                node_to_update.value().sum_rewards.clone() + reward.clone();
            current_node_id = node_to_update.parent().unwrap().id();
        }
        // Update root
        let mut node_to_update = tree.get_mut(current_node_id).unwrap();
        node_to_update.value().n_visits += 1;
        node_to_update.value().sum_rewards += reward;
    }
}

/// Simulating taking random moves a applying until the end.
pub struct DefaultPlayout;

impl<T: GameTrait> Playout<T> for DefaultPlayout {
    type Args = ();

    fn playout(mut state: T, _args: ()) -> T {
        while !state.is_final() {
            let moves = state
                .legals_moves();
            let m = moves.choose(&mut thread_rng()) .unwrap();
            state.do_move(&m);
        }
        state
    }
}

/// Explores at least once each child node, before going deeper.
pub struct DefaultLazyTreePolicy<State: GameTrait, EV: Evaluator<State, Reward, A>, A: Clone +
Default, Reward: Clone> {
    phantom_state: PhantomData<State>,
    phantom_a: PhantomData<A>,
    phantom_ev: PhantomData<EV>,
    phamtom_r: PhantomData<Reward>,
}

impl<State: GameTrait, EV: Evaluator<State, Reward, A, Args=f64>, A: Clone + Default,
    Reward: Clone>
DefaultLazyTreePolicy<State, EV, A, Reward>
    where
        Reward: Div + ToPrimitive + Add + Zero,
{
    pub fn select(
        mut tree: &mut LazyMctsTree<State, Reward, A>,
        turn: &State::Player,
        evaluator_args: &EV::Args,
    ) -> NodeId {
        let mut current_node_id = tree.root().id();
        while tree.get(current_node_id).unwrap().has_children() {
            if tree.get(current_node_id).unwrap().value().can_add_child() {
                return current_node_id;
            } else {
                current_node_id =
                    Self::best_child(&mut tree, turn, current_node_id, evaluator_args);
            }
        }
        current_node_id
    }

    pub fn expand(
        mut node_to_expand: NodeMut<LazyMctsNode<State, Reward, A>>,
        root_state: State,
    ) -> (NodeId, State) {
        let mut new_state = Self::update_state(root_state, &node_to_expand.value().state);
        if !node_to_expand.value().can_add_child() {
            return (node_to_expand.id(), new_state);
        }
        let unvisited_moves = &mut node_to_expand.value().unvisited_moves;
        let index = thread_rng().gen_range(0, unvisited_moves.len());
        let move_to_expand = unvisited_moves[index].clone();
        unvisited_moves[index] = unvisited_moves.last().unwrap().clone();
        unvisited_moves.pop();

        let mut new_historic = node_to_expand.value().state.clone();
        new_state.do_move(&move_to_expand);
        new_historic.push(move_to_expand);

        let new_node = MctsNode {
            sum_rewards: num_traits::zero(),
            n_visits: 0,
            unvisited_moves: new_state.legals_moves(),
            hash: new_state.hash(),
            state: new_historic,
            additional_info: Default::default(),
        };

        (node_to_expand.append(new_node).id(), new_state)
    }
}

impl<State, EV, A, Reward>
LazyTreePolicy<State, EV, A, Reward> for DefaultLazyTreePolicy<State, EV, A, Reward>
    where
        State: GameTrait,
        Reward: Clone + Div + Add + ToPrimitive + Zero,
        EV: Evaluator<State, Reward, A, Args=f64>,
        A: Clone + Default
{
    fn tree_policy(
        tree: &mut LazyMctsTree<State, Reward, A>,
        root_state: State,
        evaluator_args: &EV::Args,
    ) -> (NodeId, State) {
        let master_player = root_state.player_turn();
        let selected_node_id = Self::select(tree, &master_player, evaluator_args);
        Self::expand(tree.get_mut(selected_node_id).unwrap(), root_state)
    }

    fn update_state(mut root_state: State, historic: &[State::Move]) -> State {
        for m in historic {
            root_state.do_move(m)
        }
        root_state
    }

    fn best_child(
        tree: &LazyMctsTree<State, Reward, A>,
        turn: &State::Player,
        parent_id: NodeId,
        eval_args: &EV::Args,
    ) -> NodeId {
        let parent_node = tree.get(parent_id).unwrap();
        let n_visits = parent_node.value().n_visits;
        parent_node
            .children()
            .max_by_key(|child| EV::eval_child(&child.value(), turn, n_visits, eval_args))
            .unwrap()
            .id()
    }
}

/// Uses UCT to evaluate nodes, and evaluates an endstate with 1 if the player won.
pub struct DefaultUctEvaluator;

impl<State: GameTrait, AdditionalInfo: Clone + Default, Reward: Clone + Div + Zero + ToPrimitive
+ Add>
Evaluator<State, Reward, AdditionalInfo>
for DefaultUctEvaluator
{
    type Args = f64;
    type EvalResult = Nat;

    fn eval_child(
        child: &LazyMctsNode<State, Reward, AdditionalInfo>,
        _turn: &State::Player,
        parent_visits: Nat,
        &c: &Self::Args,
    ) -> Num {
        uct_value(
            parent_visits,
            child.sum_rewards.to_f64().unwrap(),
            child.n_visits,
            c,
        )
    }

    fn evaluate_leaf(child: State, turn: &State::Player) -> Self::EvalResult {
        if child.get_winner() == *turn {
            1
        } else {
            0
        }
    }
}