1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
use bit_vec::BitVec;
use byteorder::{BigEndian, ReadBytesExt, WriteBytesExt};
use crc::crc32;
use std::collections::HashMap;
use std::fmt;
use std::fs::File;
use std::io::Cursor;
use std::io::prelude::*;
use std::iter::Iterator;
use std::path::Path;

#[derive(Debug,PartialEq,Clone,Copy)]
/// The color type used to represent this image
pub enum ColorType {
    /// Grayscale, with one color channel
    Grayscale,
    /// RGB, with three color channels
    RGB,
    /// Indexed, with one byte per pixel representing one of up to 256 colors in the image
    Indexed,
    /// Grayscale + Alpha, with two color channels
    GrayscaleAlpha,
    /// RGBA, with four color channels
    RGBA,
}

impl fmt::Display for ColorType {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f,
               "{}",
               match *self {
                   ColorType::Grayscale => "Grayscale",
                   ColorType::RGB => "RGB",
                   ColorType::Indexed => "Indexed",
                   ColorType::GrayscaleAlpha => "Grayscale + Alpha",
                   ColorType::RGBA => "RGB + Alpha",
               })
    }
}

impl ColorType {
    fn png_header_code(&self) -> u8 {
        match *self {
            ColorType::Grayscale => 0,
            ColorType::RGB => 2,
            ColorType::Indexed => 3,
            ColorType::GrayscaleAlpha => 4,
            ColorType::RGBA => 6,
        }
    }
}

#[derive(Debug,PartialEq,Clone,Copy)]
/// The number of bits to be used per channel per pixel
pub enum BitDepth {
    /// One bit per channel per pixel
    One,
    /// Two bits per channel per pixel
    Two,
    /// Four bits per channel per pixel
    Four,
    /// Eight bits per channel per pixel
    Eight,
    /// Sixteen bits per channel per pixel
    Sixteen,
}

impl fmt::Display for BitDepth {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f,
               "{}",
               match *self {
                   BitDepth::One => "1",
                   BitDepth::Two => "2",
                   BitDepth::Four => "4",
                   BitDepth::Eight => "8",
                   BitDepth::Sixteen => "16",
               })
    }
}

impl BitDepth {
    /// Retrieve the number of bits per channel per pixel as a `u8`
    pub fn as_u8(&self) -> u8 {
        match *self {
            BitDepth::One => 1,
            BitDepth::Two => 2,
            BitDepth::Four => 4,
            BitDepth::Eight => 8,
            BitDepth::Sixteen => 16,
        }
    }
    /// Parse a number of bits per channel per pixel into a `BitDepth`
    pub fn from_u8(depth: u8) -> BitDepth {
        match depth {
            1 => BitDepth::One,
            2 => BitDepth::Two,
            4 => BitDepth::Four,
            8 => BitDepth::Eight,
            16 => BitDepth::Sixteen,
            _ => panic!("Unsupported bit depth"),
        }
    }
}

#[derive(Debug,PartialEq,Clone)]
/// Options to use for performing operations on headers (such as stripping)
pub enum Headers {
    /// None
    None,
    /// Some, with a list of 4-character chunk codes
    Some(Vec<String>),
    /// Headers that won't affect rendering (all but cHRM, gAMA, iCCP, sBIT, sRGB, bKGD, hIST, pHYs, sPLT)
    Safe,
    /// All non-critical headers
    All,
}

#[derive(Debug,Clone)]
/// An iterator over the scan lines of a PNG image
pub struct ScanLines<'a> {
    /// A reference to the PNG image being iterated upon
    pub png: &'a PngData,
    start: usize,
    end: usize,
    /// Current pass number, and 0-indexed row within the pass
    pass: Option<(u8, u32)>,
}

impl<'a> Iterator for ScanLines<'a> {
    type Item = ScanLine;
    fn next(&mut self) -> Option<Self::Item> {
        if self.end == self.png.raw_data.len() {
            None
        } else if self.png.ihdr_data.interlaced == 1 {
            // Scanlines for interlaced PNG files
            if self.pass.is_none() {
                self.pass = Some((1, 0));
            }
            // Handle edge cases for images smaller than 5 pixels in either direction
            if self.png.ihdr_data.width < 5 && self.pass.unwrap().0 == 2 {
                if let Some(pass) = self.pass.as_mut() {
                    pass.0 = 3;
                    pass.1 = 4;
                }
            }
            // Intentionally keep these separate so that they can be applied one after another
            if self.png.ihdr_data.height < 5 && self.pass.unwrap().0 == 3 {
                if let Some(pass) = self.pass.as_mut() {
                    pass.0 = 4;
                    pass.1 = 0;
                }
            }
            let bits_per_pixel = self.png.ihdr_data.bit_depth.as_u8() as usize *
                                 self.png.channels_per_pixel() as usize;
            let mut bits_per_line = self.png.ihdr_data.width as usize * bits_per_pixel;
            let y_steps;
            match self.pass {
                Some((1, _)) | Some((2, _)) => {
                    bits_per_line = (bits_per_line as f32 / 8f32).ceil() as usize;
                    y_steps = 8;
                }
                Some((3, _)) => {
                    bits_per_line = (bits_per_line as f32 / 4f32).ceil() as usize;
                    y_steps = 8;
                }
                Some((4, _)) => {
                    bits_per_line = (bits_per_line as f32 / 4f32).ceil() as usize;
                    y_steps = 4;
                }
                Some((5, _)) => {
                    bits_per_line = (bits_per_line as f32 / 2f32).ceil() as usize;
                    y_steps = 4;
                }
                Some((6, _)) => {
                    bits_per_line = (bits_per_line as f32 / 2f32).ceil() as usize;
                    y_steps = 2;
                }
                Some((7, _)) => {
                    y_steps = 2;
                }
                _ => unreachable!(),
            }
            // Determine whether to trim the last (overflow) pixel for rows on this pass
            let gap = bits_per_line % bits_per_pixel;
            if gap != 0 {
                let x_start = bits_per_pixel *
                              match self.pass.unwrap().0 {
                    2 => 4,
                    4 => 2,
                    6 => 1,
                    _ => 0,
                };
                if gap >= x_start {
                    bits_per_line += bits_per_pixel - gap;
                } else {
                    bits_per_line -= gap;
                }
            }
            let bytes_per_line = (bits_per_line as f32 / 8f32).ceil() as usize;
            self.start = self.end;
            self.end = self.start + bytes_per_line + 1;
            if let Some(pass) = self.pass.as_mut() {
                if pass.1 + y_steps >= self.png.ihdr_data.height {
                    pass.0 += 1;
                    pass.1 = match pass.0 {
                        3 => 4,
                        5 => 2,
                        7 => 1,
                        _ => 0,
                    };
                } else {
                    pass.1 += y_steps;
                }
            }
            Some(ScanLine {
                filter: self.png.raw_data[self.start],
                data: self.png.raw_data[(self.start + 1)..self.end].to_owned(),
            })
        } else {
            // Standard, non-interlaced PNG scanlines
            let bits_per_line = self.png.ihdr_data.width as usize *
                                self.png.ihdr_data.bit_depth.as_u8() as usize *
                                self.png.channels_per_pixel() as usize;
            let bytes_per_line = (bits_per_line as f32 / 8f32).ceil() as usize;
            self.start = self.end;
            self.end = self.start + bytes_per_line + 1;
            Some(ScanLine {
                filter: self.png.raw_data[self.start],
                data: self.png.raw_data[(self.start + 1)..self.end].to_owned(),
            })
        }
    }
}

#[derive(Debug,Clone)]
/// A scan line in a PNG image
pub struct ScanLine {
    /// The filter type used to encode the current scan line (0-4)
    pub filter: u8,
    /// The byte data for the current scan line, encoded with the filter specified in the `filter` field
    pub data: Vec<u8>,
}

#[derive(Debug,Clone)]
/// Contains all data relevant to a PNG image
pub struct PngData {
    /// The filtered and compressed data of the IDAT chunk
    pub idat_data: Vec<u8>,
    /// The headers stored in the IHDR chunk
    pub ihdr_data: IhdrData,
    /// The uncompressed, optionally filtered data from the IDAT chunk
    pub raw_data: Vec<u8>,
    /// The palette containing colors used in an Indexed image
    /// Contains 3 bytes per color (R+G+B), up to 768
    pub palette: Option<Vec<u8>>,
    /// The pixel value that should be rendered as transparent
    pub transparency_pixel: Option<Vec<u8>>,
    /// A map of how transparent each color in the palette should be
    pub transparency_palette: Option<Vec<u8>>,
    /// All non-critical headers from the PNG are stored here
    pub aux_headers: HashMap<String, Vec<u8>>,
}

#[derive(Debug,Clone,Copy)]
/// Headers from the IHDR chunk of the image
pub struct IhdrData {
    /// The width of the image in pixels
    pub width: u32,
    /// The height of the image in pixels
    pub height: u32,
    /// The color type of the image
    pub color_type: ColorType,
    /// The bit depth of the image
    pub bit_depth: BitDepth,
    /// The compression method used for this image (0 for DEFLATE)
    pub compression: u8,
    /// The filter mode used for this image (currently only 0 is valid)
    pub filter: u8,
    /// The interlacing mode of the image (0 = None, 1 = Adam7)
    pub interlaced: u8,
}

impl PngData {
    /// Create a new `PngData` struct by opening a file
    pub fn new(filepath: &Path) -> Result<PngData, String> {
        let mut file = match File::open(filepath) {
            Ok(f) => f,
            Err(_) => return Err("Failed to open file for reading".to_owned()),
        };
        let mut byte_data: Vec<u8> = Vec::new();
        // Read raw png data into memory
        match file.read_to_end(&mut byte_data) {
            Ok(_) => (),
            Err(_) => return Err("Failed to read from file".to_owned()),
        }
        let mut byte_offset: usize = 0;
        // Test that png header is valid
        let header: Vec<u8> = byte_data.iter().take(8).cloned().collect();
        if !file_header_is_valid(header.as_ref()) {
            return Err("Invalid PNG header detected".to_owned());
        }
        byte_offset += 8;
        // Read the data headers
        let mut aux_headers: HashMap<String, Vec<u8>> = HashMap::new();
        let mut idat_headers: Vec<u8> = Vec::new();
        loop {
            let header = parse_next_header(byte_data.as_ref(), &mut byte_offset);
            let header = match header {
                Ok(x) => x,
                Err(x) => return Err(x),
            };
            let header = match header {
                Some(x) => x,
                None => break,
            };
            if header.0 == "IDAT" {
                idat_headers.extend(header.1);
            } else {
                aux_headers.insert(header.0, header.1);
            }
        }
        // Parse the headers into our PngData
        if idat_headers.is_empty() {
            return Err("Image data was empty, skipping".to_owned());
        }
        if aux_headers.get("IHDR").is_none() {
            return Err("Image header data was missing, skipping".to_owned());
        }
        let ihdr_header = match parse_ihdr_header(aux_headers.remove("IHDR").unwrap().as_ref()) {
            Ok(x) => x,
            Err(x) => return Err(x),
        };
        let raw_data = match super::deflate::deflate::inflate(idat_headers.as_ref()) {
            Ok(x) => x,
            Err(x) => return Err(x),
        };
        // Handle transparency header
        let mut has_transparency_pixel = false;
        let mut has_transparency_palette = false;
        if aux_headers.contains_key("tRNS") {
            if ihdr_header.color_type == ColorType::Indexed {
                has_transparency_palette = true;
            } else {
                has_transparency_pixel = true;
            }
        }
        let mut png_data = PngData {
            idat_data: idat_headers.clone(),
            ihdr_data: ihdr_header,
            raw_data: raw_data,
            palette: aux_headers.remove("PLTE"),
            transparency_pixel: if has_transparency_pixel {
                aux_headers.remove("tRNS")
            } else {
                None
            },
            transparency_palette: if has_transparency_palette {
                aux_headers.remove("tRNS")
            } else {
                None
            },
            aux_headers: aux_headers,
        };
        png_data.raw_data = png_data.unfilter_image();
        // Return the PngData
        Ok(png_data)
    }
    /// Return the number of channels in the image, based on color type
    pub fn channels_per_pixel(&self) -> u8 {
        match self.ihdr_data.color_type {
            ColorType::Grayscale | ColorType::Indexed => 1,
            ColorType::GrayscaleAlpha => 2,
            ColorType::RGB => 3,
            ColorType::RGBA => 4,
        }
    }
    /// Format the `PngData` struct into a valid PNG bytestream
    pub fn output(&self) -> Vec<u8> {
        // PNG header
        let mut output = vec![0x89, 0x50, 0x4E, 0x47, 0x0D, 0x0A, 0x1A, 0x0A];
        // IHDR
        let mut ihdr_data = Vec::with_capacity(13);
        ihdr_data.write_u32::<BigEndian>(self.ihdr_data.width).ok();
        ihdr_data.write_u32::<BigEndian>(self.ihdr_data.height).ok();
        ihdr_data.write_u8(self.ihdr_data.bit_depth.as_u8()).ok();
        ihdr_data.write_u8(self.ihdr_data.color_type.png_header_code()).ok();
        ihdr_data.write_u8(0).ok(); // Compression -- deflate
        ihdr_data.write_u8(0).ok(); // Filter method -- 5-way adaptive filtering
        ihdr_data.write_u8(self.ihdr_data.interlaced).ok();
        write_png_block(b"IHDR", &ihdr_data, &mut output);
        // Ancillary headers
        for (key, header) in self.aux_headers.iter().filter(|&(ref key, _)| {
            !(**key == "bKGD" || **key == "hIST" || **key == "tRNS")
        }) {
            write_png_block(&key.as_bytes(), &header, &mut output);
        }
        // Palette
        if let Some(palette) = self.palette.clone() {
            write_png_block(b"PLTE", &palette, &mut output);
            if let Some(transparency_palette) = self.transparency_palette.clone() {
                // Transparency pixel
                write_png_block(b"tRNS", &transparency_palette, &mut output);
            }
        } else if let Some(transparency_pixel) = self.transparency_pixel.clone() {
            // Transparency pixel
            write_png_block(b"tRNS", &transparency_pixel, &mut output);
        }
        // Special ancillary headers that need to come after PLTE but before IDAT
        for (key, header) in self.aux_headers.iter().filter(|&(ref key, _)| {
            **key == "bKGD" || **key == "hIST" || **key == "tRNS"
        }) {
            write_png_block(&key.as_bytes(), &header, &mut output);
        }
        // IDAT data
        write_png_block(b"IDAT", &self.idat_data, &mut output);
        // Stream end
        write_png_block(b"IEND", &[], &mut output);

        output
    }
    /// Return an iterator over the scanlines of the image
    pub fn scan_lines(&self) -> ScanLines {
        ScanLines {
            png: &self,
            start: 0,
            end: 0,
            pass: None,
        }
    }
    /// Reverse all filters applied on the image, returning an unfiltered IDAT bytestream
    pub fn unfilter_image(&self) -> Vec<u8> {
        let mut unfiltered = Vec::with_capacity(self.raw_data.len());
        let bpp = (((self.ihdr_data.bit_depth.as_u8() * self.channels_per_pixel()) as f32) /
                   8f32)
                      .ceil() as usize;
        let mut last_line: Vec<u8> = Vec::new();
        for line in self.scan_lines() {
            let unfiltered_line = unfilter_line(line.filter, bpp, &line.data, &last_line);
            unfiltered.push(0);
            unfiltered.extend_from_slice(&unfiltered_line);
            last_line = unfiltered_line;
        }
        unfiltered
    }
    /// Apply the specified filter type to all rows in the image
    /// 0: None
    /// 1: Sub
    /// 2: Up
    /// 3: Average
    /// 4: Paeth
    /// 5: All (heuristically pick the best filter for each line)
    pub fn filter_image(&self, filter: u8) -> Vec<u8> {
        let mut filtered = Vec::with_capacity(self.raw_data.len());
        let bpp = (((self.ihdr_data.bit_depth.as_u8() * self.channels_per_pixel()) as f32) /
                   8f32)
                      .ceil() as usize;
        let mut last_line: Vec<u8> = Vec::new();
        for line in self.scan_lines() {
            match filter {
                0 | 1 | 2 | 3 | 4 => {
                    filtered.push(filter);
                    filtered.extend(filter_line(filter, bpp, &line.data, &last_line));
                }
                5 => {
                    // Heuristically guess best filter per line
                    // Uses MSAD algorithm mentioned in libpng reference docs
                    // http://www.libpng.org/pub/png/book/chapter09.html
                    let mut trials: HashMap<u8, Vec<u8>> = HashMap::with_capacity(5);
                    for filter in 0..5 {
                        trials.insert(filter, filter_line(filter, bpp, &line.data, &last_line));
                    }
                    let (best_filter, best_line) = trials.iter()
                                                         .min_by_key(|x| {
                                                             x.1.iter().fold(0u64, |acc, &x| {
                                                                 let signed: i16 = if x > 127 {
                                                                     (x as i16) - 256
                                                                 } else {
                                                                     x as i16
                                                                 };
                                                                 acc + signed.abs() as u64
                                                             })
                                                         })
                                                         .unwrap();
                    filtered.push(*best_filter);
                    filtered.extend_from_slice(best_line);
                }
                _ => unreachable!(),
            }
            last_line = line.data.clone();
        }
        filtered
    }
    /// Attempt to reduce the bit depth of the image
    /// Returns true if the bit depth was reduced, false otherwise
    pub fn reduce_bit_depth(&mut self) -> bool {
        if self.ihdr_data.bit_depth != BitDepth::Sixteen {
            if self.ihdr_data.color_type == ColorType::Indexed ||
               self.ihdr_data.color_type == ColorType::Grayscale {
                return match reduce_bit_depth_8_or_less(self) {
                    Some((data, depth)) => {
                        self.raw_data = data;
                        self.ihdr_data.bit_depth = BitDepth::from_u8(depth);
                        true
                    }
                    None => false,
                };
            }
            return false;
        }

        // Reduce from 16 to 8 bits per channel per pixel
        let mut reduced =
            Vec::with_capacity((self.ihdr_data.width * self.ihdr_data.height *
                                self.channels_per_pixel() as u32 +
                                self.ihdr_data.height) as usize);
        let mut high_byte = 0;

        for line in self.scan_lines() {
            reduced.push(line.filter);
            for (i, byte) in line.data.iter().enumerate() {
                if i % 2 == 0 {
                    // High byte
                    high_byte = *byte;
                } else {
                    // Low byte
                    if high_byte != *byte {
                        // Can't reduce, exit early
                        return false;
                    }
                    reduced.push(*byte);
                }
            }
        }

        self.ihdr_data.bit_depth = BitDepth::Eight;
        self.raw_data = reduced;
        true
    }
    /// Attempt to reduce the number of colors in the palette
    /// Returns true if the palette was reduced, false otherwise
    pub fn reduce_palette(&mut self) -> bool {
        // TODO: Implement
        false
    }
    /// Attempt to reduce the color type of the image
    /// Returns true if the color type was reduced, false otherwise
    pub fn reduce_color_type(&mut self) -> bool {
        let mut changed = false;
        let mut should_reduce_bit_depth = false;

        // Go down one step at a time
        // Maybe not the most efficient, but it's safe
        if self.ihdr_data.color_type == ColorType::RGBA {
            if let Some(data) = reduce_rgba_to_grayscale_alpha(self) {
                self.raw_data = data;
                self.ihdr_data.color_type = ColorType::GrayscaleAlpha;
                changed = true;
            } else if let Some(data) = reduce_rgba_to_rgb(self) {
                self.raw_data = data;
                self.ihdr_data.color_type = ColorType::RGB;
                changed = true;
            } else if let Some((data, palette, trans)) = reduce_rgba_to_palette(self) {
                self.raw_data = data;
                self.palette = Some(palette);
                if trans.iter().any(|x| *x != 255) {
                    self.transparency_palette = Some(trans);
                } else {
                    self.transparency_palette = None;
                }
                self.ihdr_data.color_type = ColorType::Indexed;
                changed = true;
                should_reduce_bit_depth = true;
            }
        }

        if self.ihdr_data.color_type == ColorType::GrayscaleAlpha {
            if let Some(data) = reduce_grayscale_alpha_to_grayscale(self) {
                self.raw_data = data;
                self.ihdr_data.color_type = ColorType::Grayscale;
                changed = true;
                should_reduce_bit_depth = true;
            }
        }

        if self.ihdr_data.color_type == ColorType::RGB {
            if let Some(data) = reduce_rgb_to_grayscale(self) {
                self.raw_data = data;
                self.ihdr_data.color_type = ColorType::Grayscale;
                changed = true;
                should_reduce_bit_depth = true;
            } else if let Some((data, palette)) = reduce_rgb_to_palette(self) {
                self.raw_data = data;
                self.palette = Some(palette);
                self.ihdr_data.color_type = ColorType::Indexed;
                changed = true;
                should_reduce_bit_depth = true;
            }
        }

        if self.ihdr_data.color_type == ColorType::Indexed && self.transparency_palette.is_none() &&
           self.palette.as_ref().map(|x| x.len()).unwrap() > 128 {
            if let Some(data) = reduce_palette_to_grayscale(self) {
                self.raw_data = data;
                self.palette = None;
                self.ihdr_data.color_type = ColorType::Grayscale;
                changed = true;
                should_reduce_bit_depth = false;
            }
        } else if self.ihdr_data.color_type == ColorType::Grayscale {
            if let Some((data, palette)) = reduce_grayscale_to_palette(self) {
                self.raw_data = data;
                self.palette = Some(palette);
                self.ihdr_data.color_type = ColorType::Indexed;
                changed = true;
                should_reduce_bit_depth = true;
            }
        }

        if should_reduce_bit_depth {
            // Some conversions will allow us to perform bit depth reduction that
            // wasn't possible before
            if let Some((data, depth)) = reduce_bit_depth_8_or_less(self) {
                self.raw_data = data;
                self.ihdr_data.bit_depth = BitDepth::from_u8(depth);
            }
        }

        changed
    }
    /// Convert the image to the specified interlacing type
    /// Returns true if the interlacing was changed, false otherwise
    /// The `interlace` parameter specifies the *new* interlacing mode
    /// Assumes that the data has already been de-filtered
    pub fn change_interlacing(&mut self, interlace: u8) -> bool {
        if interlace == self.ihdr_data.interlaced {
            return false;
        }

        if interlace == 1 {
            // Convert progressive to interlaced data
            interlace_image(self);
        } else {
            // Convert interlaced to progressive data
            deinterlace_image(self);
        }
        true
    }
}

fn interlace_image(png: &mut PngData) {
    let mut passes: Vec<BitVec> = Vec::with_capacity(7);
    for _ in 0..7 {
        passes.push(BitVec::new());
    }
    let bits_per_pixel = png.ihdr_data.bit_depth.as_u8() * png.channels_per_pixel();
    for (index, line) in png.scan_lines().enumerate() {
        match index % 8 {
            // Add filter bytes to appropriate lines
            0 => {
                passes[0].extend(BitVec::from_elem(8, false));
                passes[3].extend(BitVec::from_elem(8, false));
                passes[5].extend(BitVec::from_elem(8, false));
                if png.ihdr_data.width > 4 {
                    passes[1].extend(BitVec::from_elem(8, false));
                }
            }
            4 => {
                passes[3].extend(BitVec::from_elem(8, false));
                passes[5].extend(BitVec::from_elem(8, false));
                passes[2].extend(BitVec::from_elem(8, false));
            }
            2 | 6 => {
                passes[4].extend(BitVec::from_elem(8, false));
                passes[5].extend(BitVec::from_elem(8, false));
            }
            _ => {
                passes[6].extend(BitVec::from_elem(8, false));
            }
        }
        let bit_vec = BitVec::from_bytes(&line.data);
        for (i, bit) in bit_vec.iter().enumerate() {
            // Avoid moving padded 0's into new image
            if i >= (png.ihdr_data.width * bits_per_pixel as u32) as usize {
                break;
            }
            // Copy pixels into interlaced passes
            let pix_modulo = (((i / bits_per_pixel as usize) as f32).floor() as usize) % 8;
            match index % 8 {
                0 => {
                    match pix_modulo {
                        0 => passes[0].push(bit),
                        4 => passes[1].push(bit),
                        2 | 6 => passes[3].push(bit),
                        _ => passes[5].push(bit),
                    }
                }
                4 => {
                    match pix_modulo {
                        0 | 4 => passes[2].push(bit),
                        2 | 6 => passes[3].push(bit),
                        _ => passes[5].push(bit),
                    }
                }
                2 | 6 => {
                    match pix_modulo % 2 {
                        0 => passes[4].push(bit),
                        _ => passes[5].push(bit),
                    }
                }
                _ => {
                    passes[6].push(bit);
                }
            }
        }
        // Pad end of line on each pass to get 8 bits per byte
        for pass in &mut passes {
            while pass.len() % 8 != 0 {
                pass.push(false);
            }
        }
    }
    let mut output = Vec::new();
    for pass in &passes {
        output.extend(pass.to_bytes());
    }
    png.raw_data = output;
}

fn deinterlace_image(png: &mut PngData) {
    let bits_per_pixel = png.ihdr_data.bit_depth.as_u8() * png.channels_per_pixel();
    let mut lines: Vec<BitVec> = Vec::with_capacity(png.ihdr_data.height as usize);
    for _ in 0..png.ihdr_data.height {
        // Initialize each output line with a starting filter byte of 0
        // as well as some blank data
        lines.push(BitVec::from_elem(8 + bits_per_pixel as usize * png.ihdr_data.width as usize,
                                     false));
    }
    let mut current_pass = 1;
    let mut pass_constants = interlaced_constants(current_pass);
    let mut current_y: usize = pass_constants.y_shift as usize;
    for line in png.scan_lines() {
        let bit_vec = BitVec::from_bytes(&line.data);
        let bits_in_line = ((png.ihdr_data.width - pass_constants.x_shift as u32) as f32 /
                            pass_constants.x_step as f32)
                               .ceil() as usize *
                           bits_per_pixel as usize;
        for (i, bit) in bit_vec.iter().enumerate() {
            // Avoid moving padded 0's into new image
            if i >= bits_in_line {
                break;
            }
            let current_x: usize = pass_constants.x_shift as usize +
                                   (i / bits_per_pixel as usize) * pass_constants.x_step as usize;
            // Copy this bit into the output line, offset by 8 because of filter byte
            let index = 8 + (i % bits_per_pixel as usize) + current_x * bits_per_pixel as usize;
            lines[current_y].set(index, bit);
        }
        // Calculate the next line and move to next pass if necessary
        current_y += pass_constants.y_step as usize;
        if current_y >= png.ihdr_data.height as usize {
            if current_pass == 7 {
                break;
            }
            current_pass += 1;
            if current_pass == 2 && png.ihdr_data.width <= 4 {
                current_pass += 1;
            }
            if current_pass == 3 && png.ihdr_data.height <= 4 {
                current_pass += 1;
            }
            pass_constants = interlaced_constants(current_pass);
            current_y = pass_constants.y_shift as usize;
        }
    }
    let mut output = Vec::new();
    for line in &mut lines {
        while line.len() % 8 != 0 {
            line.push(false);
        }
        output.extend(line.to_bytes());
    }
    png.raw_data = output;
}

struct InterlacedConstants {
    x_shift: u8,
    y_shift: u8,
    x_step: u8,
    y_step: u8,
}

fn interlaced_constants(pass: u8) -> InterlacedConstants {
    match pass {
        1 => {
            InterlacedConstants {
                x_shift: 0,
                y_shift: 0,
                x_step: 8,
                y_step: 8,
            }
        }
        2 => {
            InterlacedConstants {
                x_shift: 4,
                y_shift: 0,
                x_step: 8,
                y_step: 8,
            }
        }
        3 => {
            InterlacedConstants {
                x_shift: 0,
                y_shift: 4,
                x_step: 4,
                y_step: 8,
            }
        }
        4 => {
            InterlacedConstants {
                x_shift: 2,
                y_shift: 0,
                x_step: 4,
                y_step: 4,
            }
        }
        5 => {
            InterlacedConstants {
                x_shift: 0,
                y_shift: 2,
                x_step: 2,
                y_step: 4,
            }
        }
        6 => {
            InterlacedConstants {
                x_shift: 1,
                y_shift: 0,
                x_step: 2,
                y_step: 2,
            }
        }
        7 => {
            InterlacedConstants {
                x_shift: 0,
                y_shift: 1,
                x_step: 1,
                y_step: 2,
            }
        }
        _ => unreachable!(),
    }
}

fn filter_line(filter: u8, bpp: usize, data: &[u8], last_line: &[u8]) -> Vec<u8> {
    let mut filtered = Vec::with_capacity(data.len());
    match filter {
        0 => {
            filtered.extend_from_slice(data);
        }
        1 => {
            for (i, byte) in data.iter().enumerate() {
                filtered.push(match i.checked_sub(bpp) {
                    Some(x) => byte.wrapping_sub(data[x]),
                    None => *byte,
                });
            }
        }
        2 => {
            for (i, byte) in data.iter().enumerate() {
                if last_line.is_empty() {
                    filtered.push(*byte);
                } else {
                    filtered.push(byte.wrapping_sub(last_line[i]));
                };
            }
        }
        3 => {
            for (i, byte) in data.iter().enumerate() {
                if last_line.is_empty() {
                    filtered.push(match i.checked_sub(bpp) {
                        Some(x) => byte.wrapping_sub(data[x] >> 1),
                        None => *byte,
                    });
                } else {
                    filtered.push(match i.checked_sub(bpp) {
                        Some(x) => {
                            byte.wrapping_sub(((data[x] as u16 + last_line[i] as u16) >> 1) as u8)
                        }
                        None => byte.wrapping_sub(last_line[i] >> 1),
                    });
                };
            }
        }
        4 => {
            for (i, byte) in data.iter().enumerate() {
                if last_line.is_empty() {
                    filtered.push(match i.checked_sub(bpp) {
                        Some(x) => byte.wrapping_sub(data[x]),
                        None => *byte,
                    });
                } else {
                    filtered.push(match i.checked_sub(bpp) {
                        Some(x) => {
                            byte.wrapping_sub(paeth_predictor(data[x], last_line[i], last_line[x]))
                        }
                        None => byte.wrapping_sub(last_line[i]),
                    });
                };
            }
        }
        _ => unreachable!(),
    }
    filtered
}

fn unfilter_line(filter: u8, bpp: usize, data: &[u8], last_line: &[u8]) -> Vec<u8> {
    let mut unfiltered = Vec::with_capacity(data.len());
    match filter {
        0 => {
            unfiltered.extend_from_slice(data);
        }
        1 => {
            for (i, byte) in data.iter().enumerate() {
                match i.checked_sub(bpp) {
                    Some(x) => {
                        let b = unfiltered[x];
                        unfiltered.push(byte.wrapping_add(b));
                    }
                    None => {
                        unfiltered.push(*byte);
                    }
                };
            }
        }
        2 => {
            for (i, byte) in data.iter().enumerate() {
                if last_line.is_empty() {
                    unfiltered.push(*byte);
                } else {
                    unfiltered.push(byte.wrapping_add(last_line[i]));
                };
            }
        }
        3 => {
            for (i, byte) in data.iter().enumerate() {
                if last_line.is_empty() {
                    match i.checked_sub(bpp) {
                        Some(x) => {
                            let b = unfiltered[x];
                            unfiltered.push(byte.wrapping_add(b >> 1));
                        }
                        None => {
                            unfiltered.push(*byte);
                        }
                    };
                } else {
                    match i.checked_sub(bpp) {
                        Some(x) => {
                            let b = unfiltered[x];
                            unfiltered.push(byte.wrapping_add(((b as u16 + last_line[i] as u16) >> 1) as u8));
                        }
                        None => {
                            unfiltered.push(byte.wrapping_add(last_line[i] >> 1));
                        }
                    };
                };
            }
        }
        4 => {
            for (i, byte) in data.iter().enumerate() {
                if last_line.is_empty() {
                    match i.checked_sub(bpp) {
                        Some(x) => {
                            let b = unfiltered[x];
                            unfiltered.push(byte.wrapping_add(b));
                        }
                        None => {
                            unfiltered.push(*byte);
                        }
                    };
                } else {
                    match i.checked_sub(bpp) {
                        Some(x) => {
                            let b = unfiltered[x];
                            unfiltered.push(byte.wrapping_add(paeth_predictor(b,
                                                                              last_line[i],
                                                                              last_line[x])));
                        }
                        None => {
                            unfiltered.push(byte.wrapping_add(last_line[i]));
                        }
                    };
                };
            }
        }
        _ => unreachable!(),
    }
    unfiltered
}

fn reduce_bit_depth_8_or_less(png: &PngData) -> Option<(Vec<u8>, u8)> {
    let mut reduced = BitVec::with_capacity(png.raw_data.len() * 8);
    let bit_depth: usize = png.ihdr_data.bit_depth.as_u8() as usize;
    let mut allowed_bits = 1;
    for line in png.scan_lines() {
        let bit_vec = BitVec::from_bytes(&line.data);
        for (i, bit) in bit_vec.iter().enumerate() {
            let bit_index = bit_depth - (i % bit_depth);
            if bit && bit_index > allowed_bits {
                allowed_bits = bit_index.next_power_of_two();
                if allowed_bits == bit_depth {
                    // Not reducable
                    return None;
                }
            }
        }
    }

    for line in png.scan_lines() {
        reduced.extend(BitVec::from_bytes(&[line.filter]));
        let bit_vec = BitVec::from_bytes(&line.data);
        for (i, bit) in bit_vec.iter().enumerate() {
            let bit_index = bit_depth - (i % bit_depth);
            if bit_index <= allowed_bits {
                reduced.push(bit);
            }
        }
        // Pad end of line to get 8 bits per byte
        while reduced.len() % 8 != 0 {
            reduced.push(false);
        }
    }

    Some((reduced.to_bytes(), allowed_bits as u8))
}

fn reduce_rgba_to_rgb(png: &PngData) -> Option<Vec<u8>> {
    let mut reduced = Vec::with_capacity(png.raw_data.len());
    let byte_depth = png.ihdr_data.bit_depth.as_u8() >> 3;
    let bpp: usize = 4 * byte_depth as usize;
    for line in png.scan_lines() {
        reduced.push(line.filter);
        for (i, byte) in line.data.iter().enumerate() {
            if i % bpp >= (bpp - byte_depth as usize) {
                if *byte != 255 {
                    return None;
                }
            } else {
                reduced.push(*byte);
            }
        }
    }

    Some(reduced)
}

fn reduce_rgba_to_grayscale_alpha(png: &PngData) -> Option<Vec<u8>> {
    let mut reduced = Vec::with_capacity(png.raw_data.len());
    let byte_depth = png.ihdr_data.bit_depth.as_u8() >> 3;
    let bpp: usize = 4 * byte_depth as usize;
    for line in png.scan_lines() {
        reduced.push(line.filter);
        let mut low_bytes = Vec::with_capacity(4);
        let mut high_bytes = Vec::with_capacity(4);
        let mut trans_bytes = Vec::with_capacity(byte_depth as usize);
        for (i, byte) in line.data.iter().enumerate() {
            if i % bpp < (bpp - byte_depth as usize) {
                if byte_depth == 1 || i % 2 == 1 {
                    low_bytes.push(*byte);
                } else {
                    high_bytes.push(*byte);
                }
            } else {
                trans_bytes.push(*byte);
            }

            if i % bpp == bpp - 1 {
                low_bytes.sort();
                low_bytes.dedup();
                if low_bytes.len() > 1 {
                    return None;
                }
                if byte_depth == 2 {
                    high_bytes.sort();
                    high_bytes.dedup();
                    if high_bytes.len() > 1 {
                        return None;
                    }
                    reduced.push(high_bytes[0]);
                    high_bytes.clear();
                }
                reduced.push(low_bytes[0]);
                low_bytes.clear();
                reduced.extend_from_slice(&trans_bytes);
                trans_bytes.clear();
            }
        }
    }

    Some(reduced)
}

fn reduce_rgba_to_palette(png: &PngData) -> Option<(Vec<u8>, Vec<u8>, Vec<u8>)> {
    if png.ihdr_data.bit_depth != BitDepth::Eight {
        return None;
    }
    let mut reduced = Vec::with_capacity(png.raw_data.len());
    let mut palette = Vec::with_capacity(256);
    let bpp: usize = (4 * png.ihdr_data.bit_depth.as_u8() as usize) >> 3;
    for line in png.scan_lines() {
        reduced.push(line.filter);
        let mut cur_pixel = Vec::with_capacity(bpp);
        for (i, byte) in line.data.iter().enumerate() {
            cur_pixel.push(*byte);
            if i % bpp == bpp - 1 {
                if palette.contains(&cur_pixel) {
                    let idx = palette.iter().enumerate().find(|&x| x.1 == &cur_pixel).unwrap().0;
                    reduced.push(idx as u8);
                } else {
                    let len = palette.len();
                    if len == 256 {
                        return None;
                    }
                    palette.push(cur_pixel.clone());
                    reduced.push(len as u8);
                }
                cur_pixel.clear();
            }
        }
    }

    let mut color_palette = Vec::with_capacity(palette.len() * 3);
    let mut trans_palette = Vec::with_capacity(palette.len());
    for color in &palette {
        for (i, byte) in color.iter().enumerate() {
            if i < 3 {
                color_palette.push(*byte);
            } else {
                trans_palette.push(*byte);
            }
        }
    }

    Some((reduced, color_palette, trans_palette))
}

fn reduce_rgb_to_palette(png: &PngData) -> Option<(Vec<u8>, Vec<u8>)> {
    if png.ihdr_data.bit_depth != BitDepth::Eight {
        return None;
    }
    let mut reduced = Vec::with_capacity(png.raw_data.len());
    let mut palette = Vec::with_capacity(256);
    let bpp: usize = (3 * png.ihdr_data.bit_depth.as_u8() as usize) >> 3;
    for line in png.scan_lines() {
        reduced.push(line.filter);
        let mut cur_pixel = Vec::with_capacity(bpp);
        for (i, byte) in line.data.iter().enumerate() {
            cur_pixel.push(*byte);
            if i % bpp == bpp - 1 {
                if palette.contains(&cur_pixel) {
                    let idx = palette.iter().enumerate().find(|&x| x.1 == &cur_pixel).unwrap().0;
                    reduced.push(idx as u8);
                } else {
                    let len = palette.len();
                    if len == 256 {
                        return None;
                    }
                    palette.push(cur_pixel.clone());
                    reduced.push(len as u8);
                }
                cur_pixel.clear();
            }
        }
    }

    let mut color_palette = Vec::with_capacity(palette.len() * 3);
    for color in &palette {
        color_palette.extend_from_slice(&color);
    }

    Some((reduced, color_palette))
}

fn reduce_grayscale_to_palette(png: &PngData) -> Option<(Vec<u8>, Vec<u8>)> {
    if png.ihdr_data.bit_depth == BitDepth::Sixteen {
        return None;
    }
    let mut reduced = BitVec::with_capacity(png.raw_data.len() * 8);
    // Only perform reduction if we can get to 4-bits or less
    let mut palette = Vec::with_capacity(16);
    let bpp: usize = png.ihdr_data.bit_depth.as_u8() as usize;
    for line in png.scan_lines() {
        reduced.extend(BitVec::from_bytes(&[line.filter]));
        let bit_vec = BitVec::from_bytes(&line.data);
        let mut cur_pixel = BitVec::with_capacity(bpp);
        for (i, bit) in bit_vec.iter().enumerate() {
            cur_pixel.push(bit);
            if i % bpp == bpp - 1 {
                let pix_value = cur_pixel.to_bytes()[0] >> (8 - bpp);
                let pix_slice = vec![pix_value, pix_value, pix_value];
                if palette.contains(&pix_slice) {
                    let index = palette.iter().enumerate().find(|&x| x.1 == &pix_slice).unwrap().0;
                    let idx = BitVec::from_bytes(&[(index as u8) << (8 - bpp)]);
                    for b in idx.iter().take(bpp) {
                        reduced.push(b);
                    }
                } else {
                    let len = palette.len();
                    if len == 16 {
                        return None;
                    }
                    palette.push(pix_slice.clone());
                    let idx = BitVec::from_bytes(&[(len as u8) << (8 - bpp)]);
                    for b in idx.iter().take(bpp) {
                        reduced.push(b);
                    }
                }
                cur_pixel = BitVec::with_capacity(bpp);
            }
        }
        // Pad end of line to get 8 bits per byte
        while reduced.len() % 8 != 0 {
            reduced.push(false);
        }
    }

    let mut color_palette = Vec::with_capacity(palette.len() * 3);
    for color in &palette {
        color_palette.extend_from_slice(&color);
    }

    Some((reduced.to_bytes(), color_palette))
}

fn reduce_palette_to_grayscale(png: &PngData) -> Option<Vec<u8>> {
    let mut reduced = BitVec::with_capacity(png.raw_data.len() * 8);
    let mut cur_pixel = Vec::with_capacity(3);
    let palette = png.palette.clone().unwrap();
    // Iterate through palette and determine if all colors are grayscale
    for byte in &palette {
        cur_pixel.push(*byte);
        if cur_pixel.len() == 3 {
            cur_pixel.sort();
            cur_pixel.dedup();
            if cur_pixel.len() > 1 {
                return None;
            }
            cur_pixel.clear();
        }
    }

    // Iterate through scanlines and assign grayscale value to each pixel
    let bit_depth: usize = png.ihdr_data.bit_depth.as_u8() as usize;
    for line in png.scan_lines() {
        reduced.extend(BitVec::from_bytes(&[line.filter]));
        let bit_vec = BitVec::from_bytes(&line.data);
        let mut cur_pixel = BitVec::with_capacity(bit_depth);
        for bit in bit_vec {
            // Handle bit depths less than 8-bits
            // At the end of each pixel, push its grayscale value onto the reduced image
            cur_pixel.push(bit);
            if cur_pixel.len() == bit_depth {
                // `to_bytes` gives us e.g. 10000000 for a 1-bit pixel, when we would want 00000001
                let padded_pixel = cur_pixel.to_bytes()[0] >> (8 - bit_depth);
                let palette_idx: usize = padded_pixel as usize * 3;
                reduced.extend(BitVec::from_bytes(&[palette[palette_idx]]));
                // BitVec's clear function doesn't set len to 0
                cur_pixel = BitVec::with_capacity(bit_depth);
            }
        }
        // Pad end of line to get 8 bits per byte
        while reduced.len() % 8 != 0 {
            reduced.push(false);
        }
    }

    Some(reduced.to_bytes())
}

fn reduce_rgb_to_grayscale(png: &PngData) -> Option<Vec<u8>> {
    let mut reduced = Vec::with_capacity(png.raw_data.len());
    let byte_depth = png.ihdr_data.bit_depth.as_u8() >> 3;
    let bpp: usize = 3 * byte_depth as usize;
    let mut cur_pixel = Vec::with_capacity(bpp);
    for line in png.scan_lines() {
        reduced.push(line.filter);
        for (i, byte) in line.data.iter().enumerate() {
            cur_pixel.push(*byte);
            if i % bpp == bpp - 1 {
                if bpp == 3 {
                    cur_pixel.sort();
                    cur_pixel.dedup();
                    if cur_pixel.len() > 1 {
                        return None;
                    }
                    reduced.push(cur_pixel[0]);
                } else {
                    let mut pixel_zip = cur_pixel.iter()
                                                 .enumerate()
                                                 .filter(|&(i, _)| i % 2 == 0)
                                                 .map(|(_, x)| *x)
                                                 .zip(cur_pixel.iter()
                                                               .enumerate()
                                                               .filter(|&(i, _)| i % 2 == 1)
                                                               .map(|(_, x)| *x))
                                                 .collect::<Vec<(u8, u8)>>();
                    pixel_zip.sort();
                    pixel_zip.dedup();
                    if pixel_zip.len() > 1 {
                        return None;
                    }
                    reduced.push(pixel_zip[0].0);
                    reduced.push(pixel_zip[0].1);
                }
                cur_pixel.clear();
            }
        }
    }

    Some(reduced)
}

fn reduce_grayscale_alpha_to_grayscale(png: &PngData) -> Option<Vec<u8>> {
    let mut reduced = Vec::with_capacity(png.raw_data.len());
    let byte_depth = png.ihdr_data.bit_depth.as_u8() >> 3;
    let bpp: usize = 2 * byte_depth as usize;
    for line in png.scan_lines() {
        reduced.push(line.filter);
        for (i, byte) in line.data.iter().enumerate() {
            if i % bpp >= (bpp - byte_depth as usize) {
                if *byte != 255 {
                    return None;
                }
            } else {
                reduced.push(*byte);
            }
        }
    }

    Some(reduced)
}

fn paeth_predictor(a: u8, b: u8, c: u8) -> u8 {
    let p = a as i32 + b as i32 - c as i32;
    let pa = (p - a as i32).abs();
    let pb = (p - b as i32).abs();
    let pc = (p - c as i32).abs();
    if pa <= pb && pa <= pc {
        a
    } else if pb <= pc {
        b
    } else {
        c
    }
}

fn file_header_is_valid(bytes: &[u8]) -> bool {
    let expected_header: [u8; 8] = [0x89, 0x50, 0x4E, 0x47, 0x0D, 0x0A, 0x1A, 0x0A];

    bytes.iter().zip(expected_header.iter()).all(|x| x.0 == x.1)
}

fn parse_next_header(byte_data: &[u8],
                     byte_offset: &mut usize)
                     -> Result<Option<(String, Vec<u8>)>, String> {
    let mut rdr = Cursor::new(byte_data.iter()
                                       .skip(*byte_offset)
                                       .take(4)
                                       .cloned()
                                       .collect::<Vec<u8>>());
    let length: u32 = match rdr.read_u32::<BigEndian>() {
        Ok(x) => x,
        Err(_) => return Err("Invalid data found--unable to read PNG file".to_owned()),
    };
    *byte_offset += 4;

    let mut header_bytes: Vec<u8> = byte_data.iter().skip(*byte_offset).take(4).cloned().collect();
    let header = match String::from_utf8(header_bytes.clone()) {
        Ok(x) => x,
        Err(_) => return Err("Invalid data found--unable to read PNG file".to_owned()),
    };
    if header == "IEND" {
        // End of data
        return Ok(None);
    }
    *byte_offset += 4;

    let data: Vec<u8> = byte_data.iter()
                                 .skip(*byte_offset)
                                 .take(length as usize)
                                 .cloned()
                                 .collect();
    *byte_offset += length as usize;
    let mut rdr = Cursor::new(byte_data.iter()
                                       .skip(*byte_offset)
                                       .take(4)
                                       .cloned()
                                       .collect::<Vec<u8>>());
    let crc: u32 = match rdr.read_u32::<BigEndian>() {
        Ok(x) => x,
        Err(_) => return Err("Invalid data found--unable to read PNG file".to_owned()),
    };
    *byte_offset += 4;
    header_bytes.extend(data.clone());
    if crc32::checksum_ieee(header_bytes.as_ref()) != crc {
        return Err(format!("Corrupt data chunk found--CRC Mismatch in {}", header));
    }

    Ok(Some((header, data)))
}

fn parse_ihdr_header(byte_data: &[u8]) -> Result<IhdrData, String> {
    let mut rdr = Cursor::new(&byte_data[0..8]);
    Ok(IhdrData {
        color_type: match byte_data[9] {
            0 => ColorType::Grayscale,
            2 => ColorType::RGB,
            3 => ColorType::Indexed,
            4 => ColorType::GrayscaleAlpha,
            6 => ColorType::RGBA,
            _ => return Err("Unexpected color type in header".to_owned()),
        },
        bit_depth: match byte_data[8] {
            1 => BitDepth::One,
            2 => BitDepth::Two,
            4 => BitDepth::Four,
            8 => BitDepth::Eight,
            16 => BitDepth::Sixteen,
            _ => return Err("Unexpected bit depth in header".to_owned()),
        },
        width: rdr.read_u32::<BigEndian>().unwrap(),
        height: rdr.read_u32::<BigEndian>().unwrap(),
        compression: byte_data[10],
        filter: byte_data[11],
        interlaced: byte_data[12],
    })
}

fn write_png_block(key: &[u8], header: &[u8], output: &mut Vec<u8>) {
    let mut header_data = Vec::with_capacity(header.len() + 4);
    header_data.extend_from_slice(key);
    header_data.extend_from_slice(header);
    output.reserve(header_data.len() + 8);
    output.write_u32::<BigEndian>(header_data.len() as u32 - 4).ok();
    let crc = crc32::checksum_ieee(&header_data);
    output.append(&mut header_data);
    output.write_u32::<BigEndian>(crc).ok();
}