1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
#![warn(missing_docs)]

/*!
# An owning reference.

This crate provides the _owning reference_ type `OwningRef` that enables it
to bundle a reference together with the owner of the data it points to.
This allows moving and dropping of a `OwningRef` without needing to recreate the reference.

It works by requiring owner types to dereference to stable memory locations and preventing mutable access, which in practice requires an heap allocation as
provided by `Box<T>`, `Rc<T>`, etc.

Also provided are typedefs for common owner type combinations,
which allows for less verbose type signatures. For example, `BoxRef<T>` instead of `OwningRef<Box<T>, T>`.

The crate also provides the `OwningHandle` type, which allows bundling
a dependent handle object along with the data it depends on. See the
documentation around `OwningHandle` for more details.

# Examples

## Basics

```
extern crate owning_ref;
use owning_ref::BoxRef;

fn main() {
    // Create an array owned by a Box.
    let arr = Box::new([1, 2, 3, 4]) as Box<[i32]>;

    // Transfer into a BoxRef.
    let arr: BoxRef<[i32]> = BoxRef::new(arr);
    assert_eq!(&*arr, &[1, 2, 3, 4]);

    // We can slice the array without losing ownership or changing type.
    let arr: BoxRef<[i32]> = arr.map(|arr| &arr[1..3]);
    assert_eq!(&*arr, &[2, 3]);

    // Also works for Arc, Rc, String and Vec!
}
```

## Caching a reference to a struct field

```
extern crate owning_ref;
use owning_ref::BoxRef;

fn main() {
    struct Foo {
        tag: u32,
        x: u16,
        y: u16,
        z: u16,
    }
    let foo = Foo { tag: 1, x: 100, y: 200, z: 300 };

    let or = BoxRef::new(Box::new(foo)).map(|foo| {
        match foo.tag {
            0 => &foo.x,
            1 => &foo.y,
            2 => &foo.z,
            _ => panic!(),
        }
    });

    assert_eq!(*or, 200);
}
```

## Caching a reference to an entry in a vector

```
extern crate owning_ref;
use owning_ref::VecRef;

fn main() {
    let v = VecRef::new(vec![1, 2, 3, 4, 5]).map(|v| &v[3]);
    assert_eq!(*v, 4);
}
```

## Caching a subslice of a String

```
extern crate owning_ref;
use owning_ref::StringRef;

fn main() {
    let s = StringRef::new("hello world".to_owned())
        .map(|s| s.split(' ').nth(1).unwrap());

    assert_eq!(&*s, "world");
}
```

## Reference counted slices that share ownership of the backing storage

```
extern crate owning_ref;
use owning_ref::RcRef;
use std::rc::Rc;

fn main() {
    let rc: RcRef<[i32]> = RcRef::new(Rc::new([1, 2, 3, 4]) as Rc<[i32]>);
    assert_eq!(&*rc, &[1, 2, 3, 4]);

    let rc_a: RcRef<[i32]> = rc.clone().map(|s| &s[0..2]);
    let rc_b = rc.clone().map(|s| &s[1..3]);
    let rc_c = rc.clone().map(|s| &s[2..4]);
    assert_eq!(&*rc_a, &[1, 2]);
    assert_eq!(&*rc_b, &[2, 3]);
    assert_eq!(&*rc_c, &[3, 4]);

    let rc_c_a = rc_c.clone().map(|s| &s[1]);
    assert_eq!(&*rc_c_a, &4);
}
```

## Atomic reference counted slices that share ownership of the backing storage

```
extern crate owning_ref;
use owning_ref::ArcRef;
use std::sync::Arc;

fn main() {
    use std::thread;

    fn par_sum(rc: ArcRef<[i32]>) -> i32 {
        if rc.len() == 0 {
            return 0;
        } else if rc.len() == 1 {
            return rc[0];
        }
        let mid = rc.len() / 2;
        let left = rc.clone().map(|s| &s[..mid]);
        let right = rc.map(|s| &s[mid..]);

        let left = thread::spawn(move || par_sum(left));
        let right = thread::spawn(move || par_sum(right));

        left.join().unwrap() + right.join().unwrap()
    }

    let rc: Arc<[i32]> = Arc::new([1, 2, 3, 4]);
    let rc: ArcRef<[i32]> = rc.into();

    assert_eq!(par_sum(rc), 10);
}
```

## References into RAII locks

```
extern crate owning_ref;
use owning_ref::RefRef;
use std::cell::{RefCell, Ref};

fn main() {
    let refcell = RefCell::new((1, 2, 3, 4));
    // Also works with Mutex and RwLock

    let refref = {
        let refref = RefRef::new(refcell.borrow()).map(|x| &x.3);
        assert_eq!(*refref, 4);

        // We move the RAII lock and the reference to one of
        // the subfields in the data it guards here:
        refref
    };

    assert_eq!(*refref, 4);

    drop(refref);

    assert_eq!(*refcell.borrow(), (1, 2, 3, 4));
}
```
*/

/// Marker trait for expressing that the memory address of the value
/// reachable via a dereference remains identical even if `self` gets moved.
pub unsafe trait StableAddress: Deref {}

/// Marker trait for expressing that the memory address of the value
/// reachable via a dereference remains identical even if `self` is a clone.
pub unsafe trait CloneStableAddress: StableAddress + Clone {}

/// An owning reference.
///
/// This wraps an owner `O` and a reference `&T` pointing
/// at something reachable from `O::Target` while keeping
/// the ability to move `self` around.
///
/// The owner is usually a pointer that points at some base type.
///
/// For more details and examples, see the module and method docs.
pub struct OwningRef<O, T: ?Sized> {
    owner: O,
    reference: *const T,
}

/// Helper trait for an erased concrete type an owner dereferences to.
/// This is used in form of a trait object for keeping
/// something around to (virtually) call the destructor.
pub trait Erased {}
impl<T> Erased for T {}

/// Helper trait for erasing the concrete type of what an owner derferences to,
/// for example `Box<T> -> Box<Erased>`. This would be unneeded with
/// higher kinded types support in the language.
pub unsafe trait IntoErased<'a> {
    /// Owner with the dereference type substituted to `Erased`.
    type Erased;
    /// Perform the type erasure.
    fn into_erased(self) -> Self::Erased;
}

/////////////////////////////////////////////////////////////////////////////
// OwningRef
/////////////////////////////////////////////////////////////////////////////

impl<O, T: ?Sized> OwningRef<O, T> {
    /// Creates a new owning reference from a owner
    /// initialized to the direct dereference of it.
    ///
    /// # Example
    /// ```
    /// extern crate owning_ref;
    /// use owning_ref::OwningRef;
    ///
    /// fn main() {
    ///     let owning_ref = OwningRef::new(Box::new(42));
    ///     assert_eq!(*owning_ref, 42);
    /// }
    /// ```
    pub fn new(o: O) -> Self
        where O: StableAddress,
              O: Deref<Target = T>,
    {
        OwningRef {
            reference: &*o,
            owner: o,
        }
    }

    /// Like `new`, but dosen’t require `O` to implement the `StableAddress` trait.
    /// Instead, the caller is responsible to make the same promises as implementing the trait.
    ///
    /// This is useful to use when coherence rules prevent implememnting the trait
    /// without adding a dependency to this crate in a third-party library.
    pub unsafe fn new_assert_stable_address(o: O) -> Self
        where O: Deref<Target = T>,
    {
        OwningRef {
            reference: &*o,
            owner: o,
        }
    }

    /// Converts `self` into a new owning reference that points at something reachable
    /// from the previous one.
    ///
    /// This can be a reference to a field of `U`, something reachable from a field of
    /// `U`, or even something unrelated with a `'static` lifetime.
    ///
    /// # Example
    /// ```
    /// extern crate owning_ref;
    /// use owning_ref::OwningRef;
    ///
    /// fn main() {
    ///     let owning_ref = OwningRef::new(Box::new([1, 2, 3, 4]));
    ///
    ///     // create a owning reference that points at the
    ///     // third element of the array.
    ///     let owning_ref = owning_ref.map(|array| &array[2]);
    ///     assert_eq!(*owning_ref, 3);
    /// }
    /// ```
    pub fn map<F, U: ?Sized>(self, f: F) -> OwningRef<O, U>
        where O: StableAddress,
              F: FnOnce(&T) -> &U
    {
        OwningRef {
            reference: f(&self),
            owner: self.owner,
        }
    }

    /// Variant of `map()` that may fail.
    pub fn try_map<F, U: ?Sized, E>(self, f: F) -> Result<OwningRef<O, U>, E>
        where O: StableAddress,
              F: FnOnce(&T) -> Result<&U, E>
    {
        Ok(OwningRef {
            reference: f(&self)?,
            owner: self.owner,
        })
    }

    /// Converts `self` into a new owning reference with a different owner type.
    ///
    /// The new owner type needs to still contain the original owner in some way
    /// so that the reference into it remains valid. This function is marked unsafe
    /// because the user needs to manually uphold this guarantee.
    pub unsafe fn map_owner<F, P>(self, f: F) -> OwningRef<P, T>
        where O: StableAddress,
              P: StableAddress,
              F: FnOnce(O) -> P
    {
        OwningRef {
            reference: self.reference,
            owner: f(self.owner),
        }
    }

    /// Converts `self` into a new owning reference where the onwer is wrapped
    /// in an additional `Box<O>`.
    ///
    /// This can be used to safely erase the owner of any `OwningRef<O, T>`
    /// to a `OwningRef<Box<Erased>, T>`.
    pub fn map_owner_box(self) -> OwningRef<Box<O>, T> {
        OwningRef {
            reference: self.reference,
            owner: Box::new(self.owner),
        }
    }

    /// Erases the concrete base type of the owner with a trait object.
    ///
    /// This allows mixing of owned references with different owner base types.
    ///
    /// # Example
    /// ```
    /// extern crate owning_ref;
    /// use owning_ref::{OwningRef, Erased};
    ///
    /// fn main() {
    ///     // NB: Using the concrete types here for explicitnes.
    ///     // For less verbose code type aliases like `BoxRef` are provided.
    ///
    ///     let owning_ref_a: OwningRef<Box<[i32; 4]>, [i32; 4]>
    ///         = OwningRef::new(Box::new([1, 2, 3, 4]));
    ///
    ///     let owning_ref_b: OwningRef<Box<Vec<(i32, bool)>>, Vec<(i32, bool)>>
    ///         = OwningRef::new(Box::new(vec![(0, false), (1, true)]));
    ///
    ///     let owning_ref_a: OwningRef<Box<[i32; 4]>, i32>
    ///         = owning_ref_a.map(|a| &a[0]);
    ///
    ///     let owning_ref_b: OwningRef<Box<Vec<(i32, bool)>>, i32>
    ///         = owning_ref_b.map(|a| &a[1].0);
    ///
    ///     let owning_refs: [OwningRef<Box<Erased>, i32>; 2]
    ///         = [owning_ref_a.erase_owner(), owning_ref_b.erase_owner()];
    ///
    ///     assert_eq!(*owning_refs[0], 1);
    ///     assert_eq!(*owning_refs[1], 1);
    /// }
    /// ```
    pub fn erase_owner<'a>(self) -> OwningRef<O::Erased, T>
        where O: IntoErased<'a>,
    {
        OwningRef {
            reference: self.reference,
            owner: self.owner.into_erased(),
        }
    }

    // TODO: wrap_owner

    // FIXME: Naming convention?
    /// A getter for the underlying owner.
    pub fn owner(&self) -> &O {
        &self.owner
    }

    // FIXME: Naming convention?
    /// Discards the reference and retrieves the owner.
    pub fn into_inner(self) -> O {
        self.owner
    }
}

/////////////////////////////////////////////////////////////////////////////
// OwningHandle
/////////////////////////////////////////////////////////////////////////////

use std::ops::{Deref, DerefMut};

/// `OwningHandle` is a complement to `OwningRef`. Where `OwningRef` allows
/// consumers to pass around an owned object and a dependent reference,
/// `OwningHandle` contains an owned object and a dependent _object_.
///
/// `OwningHandle` can encapsulate a `RefMut` along with its associated
/// `RefCell`, or an `RwLockReadGuard` along with its associated `RwLock`.
/// However, the API is completely generic and there are no restrictions on
/// what types of owning and dependent objects may be used.
///
/// `OwningHandle` is created by passing an owner object (which dereferences
/// to a stable address) along with a callback which receives a pointer to
/// that stable location. The callback may then dereference the pointer and
/// mint a dependent object, with the guarantee that the returned object will
/// not outlive the referent of the pointer.
///
/// This does foist some unsafety onto the callback, which needs an `unsafe`
/// block to dereference the pointer. It would be almost good enough for
/// OwningHandle to pass a transmuted &'statc reference to the callback
/// since the lifetime is infinite as far as the minted handle is concerned.
/// However, even an `Fn` callback can still allow the reference to escape
/// via a `StaticMutex` or similar, which technically violates the safety
/// contract. Some sort of language support in the lifetime system could
/// make this API a bit nicer.
pub struct OwningHandle<O, H>
    where O: StableAddress, H: Deref,
{
    handle: H,
    _owner: O,
}

impl<O, H> Deref for OwningHandle<O, H>
    where O: StableAddress, H: Deref,
{
    type Target = H::Target;
    fn deref(&self) -> &H::Target {
        self.handle.deref()
    }
}

unsafe impl<O, H> StableAddress for OwningHandle<O, H>
    where O: StableAddress, H: StableAddress,
{}

impl<O, H> DerefMut for OwningHandle<O, H>
    where O: StableAddress, H: DerefMut,
{
    fn deref_mut(&mut self) -> &mut H::Target {
        self.handle.deref_mut()
    }
}

impl<O, H> OwningHandle<O, H>
    where O: StableAddress, H: Deref,
{
    /// Create a new OwningHandle. The provided callback will be invoked with
    /// a pointer to the object owned by `o`, and the returned value is stored
    /// as the object to which this `OwningHandle` will forward `Deref` and
    /// `DerefMut`.
    pub fn new<F>(o: O, f: F) -> Self
        where F: Fn(*const O::Target) -> H
    {
        let h: H;
        {
            h = f(o.deref() as *const O::Target);
        }

        OwningHandle {
          handle: h,
          _owner: o,
        }
    }

    /// Create a new OwningHandle. The provided callback will be invoked with
    /// a pointer to the object owned by `o`, and the returned value is stored
    /// as the object to which this `OwningHandle` will forward `Deref` and
    /// `DerefMut`.
    pub fn try_new<F, E>(o: O, f: F) -> Result<Self, E>
        where F: Fn(*const O::Target) -> Result<H, E>
    {
        let h: H;
        {
            h = f(o.deref() as *const O::Target)?;
        }

        Ok(OwningHandle {
          handle: h,
          _owner: o,
        })
    }
}

/////////////////////////////////////////////////////////////////////////////
// std traits
/////////////////////////////////////////////////////////////////////////////

use std::convert::From;
use std::fmt::{self, Debug};
use std::marker::{Send, Sync};
use std::cmp::{Eq, PartialEq, Ord, PartialOrd, Ordering};
use std::hash::{Hash, Hasher};
use std::borrow::Borrow;

impl<O, T: ?Sized> Deref for OwningRef<O, T> {
    type Target = T;

    fn deref(&self) -> &T {
        unsafe {
            &*self.reference
        }
    }
}

unsafe impl<O, T: ?Sized> StableAddress for OwningRef<O, T> {}

impl<O, T: ?Sized> AsRef<T> for OwningRef<O, T> {
    fn as_ref(&self) -> &T {
        &*self
    }
}

impl<O, T: ?Sized> Borrow<T> for OwningRef<O, T> {
    fn borrow(&self) -> &T {
        &*self
    }
}

impl<O, T: ?Sized> From<O> for OwningRef<O, T>
    where O: StableAddress, O: Deref<Target = T>,
{
    fn from(owner: O) -> Self {
        OwningRef::new(owner)
    }
}

// ^ FIXME: Is a Into impl for calling into_inner() possible as well?

impl<O, T: ?Sized> Debug for OwningRef<O, T>
    where O: Debug, T: Debug,
{
    fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
        write!(f, "OwningRef {{ owner: {:?}, reference: {:?} }}",
               self.owner(), &**self)
    }
}

impl<O, T: ?Sized> Clone for OwningRef<O, T>
    where O: CloneStableAddress,
{
    fn clone(&self) -> Self {
        OwningRef {
            owner: self.owner.clone(),
            reference: self.reference,
        }
    }
}

unsafe impl<O, T: ?Sized> CloneStableAddress for OwningRef<O, T>
    where O: CloneStableAddress {}

unsafe impl<O: Send, T: ?Sized> Send for OwningRef<O, T> {}
unsafe impl<O: Sync, T: ?Sized> Sync for OwningRef<O, T> {}

impl Debug for Erased {
    fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
        write!(f, "<Erased>",)
    }
}

impl<O, T: ?Sized> PartialEq for OwningRef<O, T> where T: PartialEq {
    fn eq(&self, other: &Self) -> bool {
        (&*self as &T).eq(&*other as &T)
     }
}

impl<O, T: ?Sized> Eq for OwningRef<O, T> where T: Eq {}

impl<O, T: ?Sized> PartialOrd for OwningRef<O, T> where T: PartialOrd {
    fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
        (&*self as &T).partial_cmp(&*other as &T)
    }
}

impl<O, T: ?Sized> Ord for OwningRef<O, T> where T: Ord {
    fn cmp(&self, other: &Self) -> Ordering {
        (&*self as &T).cmp(&*other as &T)
    }
}

impl<O, T: ?Sized> Hash for OwningRef<O, T> where T: Hash {
    fn hash<H: Hasher>(&self, state: &mut H) {
        (&*self as &T).hash(state);
    }
}

/////////////////////////////////////////////////////////////////////////////
// std types integration and convenience type defs
/////////////////////////////////////////////////////////////////////////////

use std::boxed::Box;
use std::rc::Rc;
use std::sync::Arc;
use std::sync::{MutexGuard, RwLockReadGuard, RwLockWriteGuard};
use std::cell::{Ref, RefMut};

unsafe impl<T: ?Sized> StableAddress for Box<T> {}
unsafe impl<T> StableAddress for Vec<T> {}
unsafe impl StableAddress for String {}

unsafe impl<T: ?Sized> StableAddress for Rc<T> {}
unsafe impl<T: ?Sized> CloneStableAddress for Rc<T> {}
unsafe impl<T: ?Sized> StableAddress for Arc<T> {}
unsafe impl<T: ?Sized> CloneStableAddress for Arc<T> {}

unsafe impl<'a, T: ?Sized> StableAddress for Ref<'a, T> {}
unsafe impl<'a, T: ?Sized> StableAddress for RefMut<'a, T> {}
unsafe impl<'a, T: ?Sized> StableAddress for MutexGuard<'a, T> {}
unsafe impl<'a, T: ?Sized> StableAddress for RwLockReadGuard<'a, T> {}
unsafe impl<'a, T: ?Sized> StableAddress for RwLockWriteGuard<'a, T> {}

/// Typedef of a owning reference that uses a `Box` as the owner.
pub type BoxRef<T, U = T> = OwningRef<Box<T>, U>;
/// Typedef of a owning reference that uses a `Vec` as the owner.
pub type VecRef<T, U = T> = OwningRef<Vec<T>, U>;
/// Typedef of a owning reference that uses a `String` as the owner.
pub type StringRef = OwningRef<String, str>;

/// Typedef of a owning reference that uses a `Rc` as the owner.
pub type RcRef<T, U = T> = OwningRef<Rc<T>, U>;
/// Typedef of a owning reference that uses a `Arc` as the owner.
pub type ArcRef<T, U = T> = OwningRef<Arc<T>, U>;

/// Typedef of a owning reference that uses a `Ref` as the owner.
pub type RefRef<'a, T, U = T> = OwningRef<Ref<'a, T>, U>;
/// Typedef of a owning reference that uses a `RefMut` as the owner.
pub type RefMutRef<'a, T, U = T> = OwningRef<RefMut<'a, T>, U>;
/// Typedef of a owning reference that uses a `MutexGuard` as the owner.
pub type MutexGuardRef<'a, T, U = T> = OwningRef<MutexGuard<'a, T>, U>;
/// Typedef of a owning reference that uses a `RwLockReadGuard` as the owner.
pub type RwLockReadGuardRef<'a, T, U = T>
    = OwningRef<RwLockReadGuard<'a, T>, U>;
/// Typedef of a owning reference that uses a `RwLockWriteGuard` as the owner.
pub type RwLockWriteGuardRef<'a, T, U = T>
    = OwningRef<RwLockWriteGuard<'a, T>, U>;

unsafe impl<'a, T: 'a> IntoErased<'a> for Box<T> {
    type Erased = Box<Erased + 'a>;
    fn into_erased(self) -> Self::Erased { self }
}
unsafe impl<'a, T: 'a> IntoErased<'a> for Rc<T> {
    type Erased = Rc<Erased + 'a>;
    fn into_erased(self) -> Self::Erased { self }
}
unsafe impl<'a, T: 'a> IntoErased<'a> for Arc<T> {
    type Erased = Arc<Erased + 'a>;
    fn into_erased(self) -> Self::Erased { self }
}

/// Typedef of a owning reference that uses an erased `Box` as the owner.
pub type ErasedBoxRef<U> = OwningRef<Box<Erased>, U>;
/// Typedef of a owning reference that uses an erased `Rc` as the owner.
pub type ErasedRcRef<U> = OwningRef<Rc<Erased>, U>;
/// Typedef of a owning reference that uses an erased `Arc` as the owner.
pub type ErasedArcRef<U> = OwningRef<Arc<Erased>, U>;

#[cfg(test)]
mod tests {
    use super::{OwningHandle, OwningRef};
    use super::{RcRef, BoxRef, Erased, ErasedBoxRef};
    use std::cmp::{PartialEq, Ord, PartialOrd, Ordering};
    use std::hash::{Hash, Hasher, SipHasher};
    use std::collections::HashMap;
    use std::rc::Rc;

    #[derive(Debug, PartialEq)]
    struct Example(u32, String, [u8; 3]);
    fn example() -> Example {
        Example(42, "hello world".to_string(), [1, 2, 3])
    }

    #[test]
    fn new_deref() {
        let or: OwningRef<Box<()>, ()> = OwningRef::new(Box::new(()));
        assert_eq!(&*or, &());
    }

    #[test]
    fn into() {
        let or: OwningRef<Box<()>, ()> = Box::new(()).into();
        assert_eq!(&*or, &());
    }

    #[test]
    fn map_offset_ref() {
        let or: BoxRef<Example> = Box::new(example()).into();
        let or: BoxRef<_, u32> = or.map(|x| &x.0);
        assert_eq!(&*or, &42);

        let or: BoxRef<Example> = Box::new(example()).into();
        let or: BoxRef<_, u8> = or.map(|x| &x.2[1]);
        assert_eq!(&*or, &2);
    }

    #[test]
    fn map_heap_ref() {
        let or: BoxRef<Example> = Box::new(example()).into();
        let or: BoxRef<_, str> = or.map(|x| &x.1[..5]);
        assert_eq!(&*or, "hello");
    }

    #[test]
    fn map_static_ref() {
        let or: BoxRef<()> = Box::new(()).into();
        let or: BoxRef<_, str> = or.map(|_| "hello");
        assert_eq!(&*or, "hello");
    }

    #[test]
    fn map_chained() {
        let or: BoxRef<String> = Box::new(example().1).into();
        let or: BoxRef<_, str> = or.map(|x| &x[1..5]);
        let or: BoxRef<_, str> = or.map(|x| &x[..2]);
        assert_eq!(&*or, "el");
    }

    #[test]
    fn map_chained_inference() {
        let or = BoxRef::new(Box::new(example().1))
            .map(|x| &x[..5])
            .map(|x| &x[1..3]);
        assert_eq!(&*or, "el");
    }

    #[test]
    fn owner() {
        let or: BoxRef<String> = Box::new(example().1).into();
        let or = or.map(|x| &x[..5]);
        assert_eq!(&*or, "hello");
        assert_eq!(&**or.owner(), "hello world");
    }

    #[test]
    fn into_inner() {
        let or: BoxRef<String> = Box::new(example().1).into();
        let or = or.map(|x| &x[..5]);
        assert_eq!(&*or, "hello");
        let s = *or.into_inner();
        assert_eq!(&s, "hello world");
    }

    #[test]
    fn fmt_debug() {
        let or: BoxRef<String> = Box::new(example().1).into();
        let or = or.map(|x| &x[..5]);
        let s = format!("{:?}", or);
        assert_eq!(&s, "OwningRef { owner: \"hello world\", reference: \"hello\" }");
    }

    #[test]
    fn erased_owner() {
        let o1: BoxRef<Example, str> = BoxRef::new(Box::new(example()))
            .map(|x| &x.1[..]);

        let o2: BoxRef<String, str> = BoxRef::new(Box::new(example().1))
            .map(|x| &x[..]);

        let os: Vec<ErasedBoxRef<str>> = vec![o1.erase_owner(), o2.erase_owner()];
        assert!(os.iter().all(|e| &e[..] == "hello world"));
    }

    #[test]
    fn non_static_erased_owner() {
        let foo = [413, 612];
        let bar = &foo;

        let o: BoxRef<&[i32; 2]> = Box::new(bar).into();
        let o: BoxRef<&[i32; 2], i32> = o.map(|a: &&[i32; 2]| &a[0]);
        let o: BoxRef<Erased, i32> = o.erase_owner();

        assert_eq!(*o, 413);
    }

    #[test]
    fn raii_locks() {
        use super::{RefRef, RefMutRef};
        use std::cell::RefCell;
        use super::{MutexGuardRef, RwLockReadGuardRef, RwLockWriteGuardRef};
        use std::sync::{Mutex, RwLock};

        {
            let a = RefCell::new(1);
            let a = {
                let a = RefRef::new(a.borrow());
                assert_eq!(*a, 1);
                a
            };
            assert_eq!(*a, 1);
            drop(a);
        }
        {
            let a = RefCell::new(1);
            let a = {
                let a = RefMutRef::new(a.borrow_mut());
                assert_eq!(*a, 1);
                a
            };
            assert_eq!(*a, 1);
            drop(a);
        }
        {
            let a = Mutex::new(1);
            let a = {
                let a = MutexGuardRef::new(a.lock().unwrap());
                assert_eq!(*a, 1);
                a
            };
            assert_eq!(*a, 1);
            drop(a);
        }
        {
            let a = RwLock::new(1);
            let a = {
                let a = RwLockReadGuardRef::new(a.read().unwrap());
                assert_eq!(*a, 1);
                a
            };
            assert_eq!(*a, 1);
            drop(a);
        }
        {
            let a = RwLock::new(1);
            let a = {
                let a = RwLockWriteGuardRef::new(a.write().unwrap());
                assert_eq!(*a, 1);
                a
            };
            assert_eq!(*a, 1);
            drop(a);
        }
    }

    #[test]
    fn eq() {
        let or1: BoxRef<[u8]> = BoxRef::new(vec![1, 2, 3].into_boxed_slice());
        let or2: BoxRef<[u8]> = BoxRef::new(vec![1, 2, 3].into_boxed_slice());
        assert_eq!(or1.eq(&or2), true);
    }

    #[test]
    fn cmp() {
        let or1: BoxRef<[u8]> = BoxRef::new(vec![1, 2, 3].into_boxed_slice());
        let or2: BoxRef<[u8]> = BoxRef::new(vec![4, 5, 6].into_boxed_slice());
        assert_eq!(or1.cmp(&or2), Ordering::Less);
    }

    #[test]
    fn partial_cmp() {
        let or1: BoxRef<[u8]> = BoxRef::new(vec![4, 5, 6].into_boxed_slice());
        let or2: BoxRef<[u8]> = BoxRef::new(vec![1, 2, 3].into_boxed_slice());
        assert_eq!(or1.partial_cmp(&or2), Some(Ordering::Greater));
    }

    #[test]
    fn hash() {
        let mut h1 = SipHasher::new();
        let mut h2 = SipHasher::new();

        let or1: BoxRef<[u8]> = BoxRef::new(vec![1, 2, 3].into_boxed_slice());
        let or2: BoxRef<[u8]> = BoxRef::new(vec![1, 2, 3].into_boxed_slice());

        or1.hash(&mut h1);
        or2.hash(&mut h2);

        assert_eq!(h1.finish(), h2.finish());
    }

    #[test]
    fn borrow() {
        let mut hash = HashMap::new();
        let     key  = RcRef::<String>::new(Rc::new("foo-bar".to_string())).map(|s| &s[..]);

        hash.insert(key.clone().map(|s| &s[..3]), 42);
        hash.insert(key.clone().map(|s| &s[4..]), 23);

        assert_eq!(hash.get("foo"), Some(&42));
        assert_eq!(hash.get("bar"), Some(&23));
    }

    #[test]
    fn owning_handle() {
        use std::cell::RefCell;
        let cell = Rc::new(RefCell::new(2));
        let cell_ref = RcRef::new(cell);
        let mut handle = OwningHandle::new(cell_ref, |x| unsafe { x.as_ref() }.unwrap().borrow_mut());
        assert_eq!(*handle, 2);
        *handle = 3;
        assert_eq!(*handle, 3);
    }

    #[test]
    fn try_owning_handle_ok() {
        use std::cell::RefCell;
        let cell = Rc::new(RefCell::new(2));
        let cell_ref = RcRef::new(cell);
        let mut handle = OwningHandle::try_new::<_, ()>(cell_ref, |x| {
            Ok(unsafe {
                x.as_ref()
            }.unwrap().borrow_mut())
        }).unwrap();
        assert_eq!(*handle, 2);
        *handle = 3;
        assert_eq!(*handle, 3);
    }

    #[test]
    fn try_owning_handle_err() {
        use std::cell::RefCell;
        let cell = Rc::new(RefCell::new(2));
        let cell_ref = RcRef::new(cell);
        let handle = OwningHandle::try_new::<_, ()>(cell_ref, |x| {
            if false {
                return Ok(unsafe {
                    x.as_ref()
                }.unwrap().borrow_mut())
            }
            Err(())
        });
        assert!(handle.is_err());
    }

    #[test]
    fn nested() {
        use std::cell::RefCell;
        use std::sync::{Arc, RwLock};

        let result = {
            let complex = Rc::new(RefCell::new(Arc::new(RwLock::new("someString"))));
            let curr = RcRef::new(complex);
            let curr = OwningHandle::new(curr, |x| unsafe { x.as_ref() }.unwrap().borrow_mut());
            let mut curr = OwningHandle::new(curr, |x| unsafe { x.as_ref() }.unwrap().try_write().unwrap());
            assert_eq!(*curr, "someString");
            *curr = "someOtherString";
            curr
        };
        assert_eq!(*result, "someOtherString");
    }

    #[test]
    fn total_erase() {
        let a: OwningRef<Vec<u8>, [u8]>
            = OwningRef::new(vec![]).map(|x| &x[..]);
        let b: OwningRef<Box<[u8]>, [u8]>
            = OwningRef::new(vec![].into_boxed_slice()).map(|x| &x[..]);

        let c: OwningRef<Rc<Vec<u8>>, [u8]> = unsafe {a.map_owner(Rc::new)};
        let d: OwningRef<Rc<Box<[u8]>>, [u8]> = unsafe {b.map_owner(Rc::new)};

        let e: OwningRef<Rc<Erased>, [u8]> = c.erase_owner();
        let f: OwningRef<Rc<Erased>, [u8]> = d.erase_owner();

        let _g = e.clone();
        let _h = f.clone();
    }

    #[test]
    fn total_erase_box() {
        let a: OwningRef<Vec<u8>, [u8]>
            = OwningRef::new(vec![]).map(|x| &x[..]);
        let b: OwningRef<Box<[u8]>, [u8]>
            = OwningRef::new(vec![].into_boxed_slice()).map(|x| &x[..]);

        let c: OwningRef<Box<Vec<u8>>, [u8]> = a.map_owner_box();
        let d: OwningRef<Box<Box<[u8]>>, [u8]> = b.map_owner_box();

        let _e: OwningRef<Box<Erased>, [u8]> = c.erase_owner();
        let _f: OwningRef<Box<Erased>, [u8]> = d.erase_owner();
    }

    #[test]
    fn try_map1() {
        use std::any::Any;

        let x = Box::new(123_i32);
        let y: Box<Any> = x;

        OwningRef::new(y).try_map(|x| x.downcast_ref::<i32>().ok_or(())).is_ok();
    }

    #[test]
    fn try_map2() {
        use std::any::Any;

        let x = Box::new(123_i32);
        let y: Box<Any> = x;

        OwningRef::new(y).try_map(|x| x.downcast_ref::<i32>().ok_or(())).is_err();
    }
}