1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
//! Provides a macro to simplify operator overloading.
//! 
//! To use, include the following:
//! ```
//! extern crate overload;
//! use overload::overload;
//! use std::ops; // <- don't forget this or you'll get nasty errors
//! ```
//! 
//! # Introduction
//! 
//! Suppose we have the following `struct` definition:
//! ``` 
//! #[derive(PartialEq, Debug)]
//! struct Val {
//!     v: i32
//! }
//! ```
//! We can overload the addition of `Val`s like so:
//! ```
//! # extern crate overload;
//! # use overload::overload;
//! # use std::ops;
//! # #[derive(PartialEq, Debug)]
//! # struct Val {
//! #   v: i32
//! # }
//! overload!((a: Val) + (b: Val) -> Val { Val { v: a.v + b.v } });
//! ```
//! The macro call above generates the following code:
//! ```ignore
//! impl ops::Add<Val> for Val {
//!     type Output = Val;
//!     fn add(self, b: Val) -> Self::Output {
//!         let a = self;
//!         Val { v: a.v + b.v }
//!     }
//! }
//! ```
//! We are now able to add `Val`s:
//! ```
//! # extern crate overload;
//! # use overload::overload;
//! # use std::ops;
//! # #[derive(PartialEq, Debug)]
//! # struct Val {
//! #   v: i32
//! # }
//! # overload!((a: Val) + (b: Val) -> Val { Val { v: a.v + b.v } });
//! assert_eq!(Val{v:3} + Val{v:5}, Val{v:8});
//! ```
//! 
//! # Owned and borrowed types
//! 
//! If we also wanted to overload addition for the borrowed type `&Val` we could write:
//! ```
//! # extern crate overload;
//! # use overload::overload;
//! # use std::ops;
//! # #[derive(PartialEq, Debug)]
//! # struct Val {
//! #   v: i32
//! # }
//! overload!((a: &Val) + (b: &Val) -> Val { Val { v: a.v + b.v } });
//! ```
//! We might also want to overload addition between the owned and borrowed types:
//! ```
//! # extern crate overload;
//! # use overload::overload;
//! # use std::ops;
//! # #[derive(PartialEq, Debug)]
//! # struct Val {
//! #   v: i32
//! # }
//! overload!((a: Val) + (b: &Val) -> Val { Val { v: a.v + b.v } });
//! overload!((a: &Val) + (b: Val) -> Val { Val { v: a.v + b.v } });
//! ```
//! Let's see how we can write these combinations more concisely.
//! 
//! We can include a `?` in front of a type to indicate that it should stand in for both the owned and borrowed type.
//! 
//! To overload addition for all four combinations between `Val` and `&Val` we can therefore simply include a `?` in front of both types:
//! ```
//! # extern crate overload;
//! # use overload::overload;
//! # use std::ops;
//! # #[derive(PartialEq, Debug)]
//! # struct Val {
//! #   v: i32
//! # }
//! overload!((a: ?Val) + (b: ?Val) -> Val { Val { v: a.v + b.v } });
//! ```
//! The macro call above generates the following code:
//! ```ignore
//! impl ops::Add<Val> for Val {
//!     type Output = Val;
//!     fn add(self, b: Val) -> Self::Output {
//!         let a = self;
//!         Val { v: a.v + b.v }
//!     }
//! }
//! 
//! impl ops::Add<&Val> for Val {
//!     type Output = Val;
//!     fn add(self, b: &Val) -> Self::Output {
//!         let a = self;
//!         Val { v: a.v + b.v }
//!     }
//! }
//! 
//! impl ops::Add<Val> for &Val {
//!     type Output = Val;
//!     fn add(self, b: Val) -> Self::Output {
//!         let a = self;
//!         Val { v: a.v + b.v }
//!     }
//! }
//! 
//! impl ops::Add<&Val> for &Val {
//!     type Output = Val;
//!     fn add(self, b: &Val) -> Self::Output {
//!         let a = self;
//!         Val { v: a.v + b.v }
//!     }
//! }
//! ``` 
//! We are now able to add `Val`s and `&Val`s in any combination:
//! ```
//! # extern crate overload;
//! # use overload::overload;
//! # use std::ops;
//! # #[derive(PartialEq, Debug)]
//! # struct Val {
//! #   v: i32
//! # }
//! # overload!((a: ?Val) + (b: ?Val) -> Val { Val { v: a.v + b.v } });
//! assert_eq!(Val{v:3} + Val{v:5}, Val{v:8});
//! assert_eq!(Val{v:3} + &Val{v:5}, Val{v:8});
//! assert_eq!(&Val{v:3} + Val{v:5}, Val{v:8});
//! assert_eq!(&Val{v:3} + &Val{v:5}, Val{v:8});
//! ```
//!
//! # Binary operators
//! 
//! The general syntax to overload a binary operator between types `<a_type>` and `<b_type>` is:
//! ```ignore
//! overload!((<a_ident>: <a_type>) <op> (<b_ident>: <b_type>) -> <out_type> { /*body*/ });
//! ```
//! Inside the body you can use `<a_ident>` and `<b_ident>` freely to perform any computation.
//! 
//! The last line of the body needs to be an expression (i.e. no `;` at the end of the line) of type `<out_type>`.
//! 
//! | Operator | Example                                                         | Trait  |
//! |----------|-----------------------------------------------------------------|--------|
//! | +        | `overload!((a: A) + (b: B) -> C { /*...*/ );`                   | Add    |           
//! | -        | `overload!((a: A) - (b: B) -> C { /*...*/ );`                   | Sub    |
//! | *        | `overload!((a: A) * (b: B) -> C { /*...*/ );`                   | Mul    |
//! | /        | `overload!((a: A) / (b: B) -> C { /*...*/ );`                   | Div    |
//! | %        | `overload!((a: A) % (b: B) -> C { /*...*/ );`                   | Rem    |
//! | &        | `overload!((a: A) & (b: B) -> C { /*...*/ );`                   | BitAnd |
//! | \|       | <code>overload!((a: A) &vert; (b: B) -> C { /\*...*\/ );</code> | BitOr  |
//! | ^        | `overload!((a: A) ^ (b: B) -> C { /*...*/ );`                   | BitXor |
//! | <<       | `overload!((a: A) << (b: B) -> C { /*...*/ );`                  | Shl    |
//! | >>       | `overload!((a: A) >> (b: B) -> C { /*...*/ );`                  | Shr    |
//! 
//! # Assignment operators
//! 
//! The general syntax to overload an assignment operator between types `<a_type>` and `<b_type>` is:
//! ```ignore
//! overload!((<a_ident>: &mut <a_type>) <op> (<b_ident>: <b_type>) { /*body*/ });
//! ```
//! Inside the body you can use `<a_ident>` and `<b_ident>` freely to perform any computation and mutate `<a_ident>` as desired.
//! 
//! | Operator | Example                                                          | Trait        |
//! |----------|------------------------------------------------------------------|--------------|
//! | +=       | `overload!((a: &mut A) += (b: B) { /*...*/ );`                   | AddAssign    |           
//! | -=       | `overload!((a: &mut A) -= (b: B) { /*...*/ );`                   | SubAssign    |
//! | *=       | `overload!((a: &mut A) *= (b: B) { /*...*/ );`                   | MulAssign    |
//! | /=       | `overload!((a: &mut A) /= (b: B) { /*...*/ );`                   | DivAssign    |
//! | %=       | `overload!((a: &mut A) %= (b: B) { /*...*/ );`                   | RemAssign    |
//! | &=       | `overload!((a: &mut A) &= (b: B) { /*...*/ );`                   | BitAndAssign |
//! | \|=      | <code>overload!((a: &mut A) &vert;= (b: B) { /\*...*\/ );</code> | BitOrAssign  |
//! | ^=       | `overload!((a: &mut A) ^= (b: B) { /*...*/ );`                   | BitXorAssign |
//! | <<=      | `overload!((a: &mut A) <<= (b: B) { /*...*/ );`                  | ShlAssign    |
//! | >>=      | `overload!((a: &mut A) >>= (b: B) { /*...*/ );`                  | ShrAssign    |
//! 
//! # Unary operators
//! 
//! The general syntax to overload a unary operator for type `<a_type>` is:
//! ```ignore
//! overload!(<op> (<a_ident>: <a_type>) -> <out_type> { /*body*/ });
//! ```
//! Inside the body you can use `<a_ident>` freely to perform any computation.
//! 
//! The last line of the body needs to be an expression (i.e. no `;` at the end of the line) of type `<out_type>`.
//! 
//! | Operator | Example                                                 | Trait |
//! |----------|---------------------------------------------------------|-------|
//! | -        | `overload!(- (a: A) -> B { /*...*/ );`                  | Neg   |
//! | !        | `overload!(! (a: A) -> B { /*...*/ );`                  | Not   |  
//! 
//! # Notes
//! 
//! Remember that you can only overload operators between one or more types if at least one of the types is defined in the current crate.

#[macro_use]
mod unary;

#[macro_use]
mod assignment;

#[macro_use]
mod binary;

/// Overloads an operator. See the [module level documentation](index.html) for more information.
#[macro_export(local_inner_macros)]
macro_rules! overload {
    // Unary (both owned and borrowed)
    ($op:tt ($i:ident : ? $t:ty) -> $out:ty $body:block) => (
        _overload_unary!($op, $i, $t, $out, $body);
        _overload_unary!($op, $i, &$t, $out, $body);
    );
    // Unary (either owned or borrowed)
    ($op:tt ($i:ident : $t:ty) -> $out:ty $body:block) => (
        _overload_unary!($op, $i, $t, $out, $body);
    );
    // Assignment (both owned and borrowed)
    (($li:ident : &mut $lt:ty) $op:tt ($ri:ident : ? $rt:ty) $body:block) => (
        _overload_assignment!($op, $li, $lt, $ri, $rt, $body);
        _overload_assignment!($op, $li, $lt, $ri, &$rt, $body);
    );
    // Assignment (either owned or borrowed)
    (($li:ident : &mut $lt:ty) $op:tt ($ri:ident : $rt:ty) $body:block) => (
        _overload_assignment!($op, $li, $lt, $ri, $rt, $body);
    );    
    // Binary (both - both)
    (($li:ident : ? $lt:ty) $op:tt ($ri:ident : ? $rt:ty) -> $out:ty $body:block) => (
        _overload_binary!($op, $li, $lt, $ri, $rt, $out, $body);
        _overload_binary!($op, $li, $lt, $ri, &$rt, $out, $body);
        _overload_binary!($op, $li, &$lt, $ri, $rt, $out, $body);
        _overload_binary!($op, $li, &$lt, $ri, &$rt, $out, $body);
    );
    // Binary (both - either)
    (($li:ident : ? $lt:ty) $op:tt ($ri:ident : $rt:ty) -> $out:ty $body:block) => (
        _overload_binary!($op, $li, $lt, $ri, $rt, $out, $body);
        _overload_binary!($op, $li, &$lt, $ri, $rt, $out, $body);
    );
    // Binary (either - both)
    (($li:ident : $lt:ty) $op:tt ($ri:ident : ? $rt:ty) -> $out:ty $body:block) => (
        _overload_binary!($op, $li, $lt, $ri, $rt, $out, $body);
        _overload_binary!($op, $li, $lt, $ri, &$rt, $out, $body);
    );
    // Binary (either - either)
    (($li:ident : $lt:ty) $op:tt ($ri:ident : $rt:ty) -> $out:ty $body:block) => (
        _overload_binary!($op, $li, $lt, $ri, $rt, $out, $body);
    );
}