Struct otter_api_tests::imports::regex::RegexSet [−]
pub struct RegexSet(_);
Expand description
Match multiple (possibly overlapping) regular expressions in a single scan.
A regex set corresponds to the union of two or more regular expressions.
That is, a regex set will match text where at least one of its
constituent regular expressions matches. A regex set as its formulated here
provides a touch more power: it will also report which regular
expressions in the set match. Indeed, this is the key difference between
regex sets and a single Regex with many alternates, since only one
alternate can match at a time.
For example, consider regular expressions to match email addresses and
domains: [a-z]+@[a-z]+\.(com|org|net) and [a-z]+\.(com|org|net). If a
regex set is constructed from those regexes, then searching the text
foo@example.com will report both regexes as matching. Of course, one
could accomplish this by compiling each regex on its own and doing two
searches over the text. The key advantage of using a regex set is that it
will report the matching regexes using a single pass through the text.
If one has hundreds or thousands of regexes to match repeatedly (like a URL
router for a complex web application or a user agent matcher), then a regex
set can realize huge performance gains.
Example
This shows how the above two regexes (for matching email addresses and domains) might work:
let set = RegexSet::new(&[ r"[a-z]+@[a-z]+\.(com|org|net)", r"[a-z]+\.(com|org|net)", ]).unwrap(); // Ask whether any regexes in the set match. assert!(set.is_match("foo@example.com")); // Identify which regexes in the set match. let matches: Vec<_> = set.matches("foo@example.com").into_iter().collect(); assert_eq!(vec![0, 1], matches); // Try again, but with text that only matches one of the regexes. let matches: Vec<_> = set.matches("example.com").into_iter().collect(); assert_eq!(vec![1], matches); // Try again, but with text that doesn't match any regex in the set. let matches: Vec<_> = set.matches("example").into_iter().collect(); assert!(matches.is_empty());
Note that it would be possible to adapt the above example to using Regex
with an expression like:
(?P<email>[a-z]+@(?P<email_domain>[a-z]+[.](com|org|net)))|(?P<domain>[a-z]+[.](com|org|net))
After a match, one could then inspect the capture groups to figure out which alternates matched. The problem is that it is hard to make this approach scale when there are many regexes since the overlap between each alternate isn’t always obvious to reason about.
Limitations
Regex sets are limited to answering the following two questions:
- Does any regex in the set match?
- If so, which regexes in the set match?
As with the main Regex type, it is cheaper to ask (1) instead of (2)
since the matching engines can stop after the first match is found.
Other features like finding the location of successive matches or their sub-captures aren’t supported. If you need this functionality, the recommended approach is to compile each regex in the set independently and selectively match them based on which regexes in the set matched.
Performance
A RegexSet has the same performance characteristics as Regex. Namely,
search takes O(mn) time, where m is proportional to the size of the
regex set and n is proportional to the length of the search text.
Implementations
impl RegexSet
impl RegexSetCreate a new regex set with the given regular expressions.
This takes an iterator of S, where S is something that can produce
a &str. If any of the strings in the iterator are not valid regular
expressions, then an error is returned.
Example
Create a new regex set from an iterator of strings:
let set = RegexSet::new(&[r"\w+", r"\d+"]).unwrap(); assert!(set.is_match("foo"));
Returns true if and only if one of the regexes in this set matches the text given.
This method should be preferred if you only need to test whether any of the regexes in the set should match, but don’t care about which regexes matched. This is because the underlying matching engine will quit immediately after seeing the first match instead of continuing to find all matches.
Note that as with searches using Regex, the expression is unanchored
by default. That is, if the regex does not start with ^ or \A, or
end with $ or \z, then it is permitted to match anywhere in the
text.
Example
Tests whether a set matches some text:
let set = RegexSet::new(&[r"\w+", r"\d+"]).unwrap(); assert!(set.is_match("foo")); assert!(!set.is_match("☃"));
pub fn matches(&self, text: &str) -> SetMatches
pub fn matches(&self, text: &str) -> SetMatchesReturns the set of regular expressions that match in the given text.
The set returned contains the index of each regular expression that
matches in the given text. The index is in correspondence with the
order of regular expressions given to RegexSet’s constructor.
The set can also be used to iterate over the matched indices.
Note that as with searches using Regex, the expression is unanchored
by default. That is, if the regex does not start with ^ or \A, or
end with $ or \z, then it is permitted to match anywhere in the
text.
Example
Tests which regular expressions match the given text:
let set = RegexSet::new(&[ r"\w+", r"\d+", r"\pL+", r"foo", r"bar", r"barfoo", r"foobar", ]).unwrap(); let matches: Vec<_> = set.matches("foobar").into_iter().collect(); assert_eq!(matches, vec![0, 2, 3, 4, 6]); // You can also test whether a particular regex matched: let matches = set.matches("foobar"); assert!(!matches.matched(5)); assert!(matches.matched(6));
Returns the patterns that this set will match on.
This function can be used to determine the pattern for a match. The slice returned has exactly as many patterns givens to this regex set, and the order of the slice is the same as the order of the patterns provided to the set.
Example
let set = RegexSet::new(&[ r"\w+", r"\d+", r"\pL+", r"foo", r"bar", r"barfoo", r"foobar", ]).unwrap(); let matches: Vec<_> = set .matches("foobar") .into_iter() .map(|match_idx| &set.patterns()[match_idx]) .collect(); assert_eq!(matches, vec![r"\w+", r"\pL+", r"foo", r"bar", r"foobar"]);
Trait Implementations
Auto Trait Implementations
impl RefUnwindSafe for RegexSetimpl UnwindSafe for RegexSetBlanket Implementations
Mutably borrows from an owned value. Read more
pub fn into_any(self: Box<T, Global>) -> Box<dyn Any + 'static, Global>ⓘNotable traits for Box<R, Global>
impl<R> Read for Box<R, Global> where
R: Read + ?Sized, impl<W> Write for Box<W, Global> where
W: Write + ?Sized, impl<I, A> Iterator for Box<I, A> where
A: Allocator,
I: Iterator + ?Sized, type Item = <I as Iterator>::Item;impl<F, A> Future for Box<F, A> where
A: Allocator + 'static,
F: Future + Unpin + ?Sized, type Output = <F as Future>::Output;
pub fn into_any(self: Box<T, Global>) -> Box<dyn Any + 'static, Global>ⓘNotable traits for Box<R, Global>
impl<R> Read for Box<R, Global> where
R: Read + ?Sized, impl<W> Write for Box<W, Global> where
W: Write + ?Sized, impl<I, A> Iterator for Box<I, A> where
A: Allocator,
I: Iterator + ?Sized, type Item = <I as Iterator>::Item;impl<F, A> Future for Box<F, A> where
A: Allocator + 'static,
F: Future + Unpin + ?Sized, type Output = <F as Future>::Output;Convert Box<dyn Trait> (where Trait: Downcast) to Box<dyn Any>. Box<dyn Any> can
then be further downcast into Box<ConcreteType> where ConcreteType implements Trait. Read more
pub fn into_any_rc(self: Rc<T>) -> Rc<dyn Any + 'static>
pub fn into_any_rc(self: Rc<T>) -> Rc<dyn Any + 'static>Convert Rc<Trait> (where Trait: Downcast) to Rc<Any>. Rc<Any> can then be
further downcast into Rc<ConcreteType> where ConcreteType implements Trait. Read more
Convert &Trait (where Trait: Downcast) to &Any. This is needed since Rust cannot
generate &Any’s vtable from &Trait’s. Read more
pub fn as_any_mut(&mut self) -> &mut (dyn Any + 'static)
pub fn as_any_mut(&mut self) -> &mut (dyn Any + 'static)Convert &mut Trait (where Trait: Downcast) to &Any. This is needed since Rust cannot
generate &mut Any’s vtable from &mut Trait’s. Read more
impl<A> DynCastExt for A
impl<A> DynCastExt for Apub fn dyn_cast<T>(
self
) -> Result<<A as DynCastExtHelper<T>>::Target, <A as DynCastExtHelper<T>>::Source> where
T: ?Sized,
A: DynCastExtHelper<T>,
pub fn dyn_cast<T>(
self
) -> Result<<A as DynCastExtHelper<T>>::Target, <A as DynCastExtHelper<T>>::Source> where
T: ?Sized,
A: DynCastExtHelper<T>, Use this to cast from one trait object type to another. Read more
pub fn dyn_upcast<T>(self) -> <A as DynCastExtAdvHelper<T, T>>::Target where
T: ?Sized,
A: DynCastExtAdvHelper<T, T, Source = <A as DynCastExtAdvHelper<T, T>>::Target>,
pub fn dyn_upcast<T>(self) -> <A as DynCastExtAdvHelper<T, T>>::Target where
T: ?Sized,
A: DynCastExtAdvHelper<T, T, Source = <A as DynCastExtAdvHelper<T, T>>::Target>, Use this to upcast a trait to one of its supertraits. Read more
pub fn dyn_cast_adv<F, T>(
self
) -> Result<<A as DynCastExtAdvHelper<F, T>>::Target, <A as DynCastExtAdvHelper<F, T>>::Source> where
T: ?Sized,
A: DynCastExtAdvHelper<F, T>,
F: ?Sized,
pub fn dyn_cast_adv<F, T>(
self
) -> Result<<A as DynCastExtAdvHelper<F, T>>::Target, <A as DynCastExtAdvHelper<F, T>>::Source> where
T: ?Sized,
A: DynCastExtAdvHelper<F, T>,
F: ?Sized, pub fn dyn_cast_with_config<C>(
self
) -> Result<<A as DynCastExtAdvHelper<<C as DynCastConfig>::Source, <C as DynCastConfig>::Target>>::Target, <A as DynCastExtAdvHelper<<C as DynCastConfig>::Source, <C as DynCastConfig>::Target>>::Source> where
C: DynCastConfig,
A: DynCastExtAdvHelper<<C as DynCastConfig>::Source, <C as DynCastConfig>::Target>,
pub fn dyn_cast_with_config<C>(
self
) -> Result<<A as DynCastExtAdvHelper<<C as DynCastConfig>::Source, <C as DynCastConfig>::Target>>::Target, <A as DynCastExtAdvHelper<<C as DynCastConfig>::Source, <C as DynCastConfig>::Target>>::Source> where
C: DynCastConfig,
A: DynCastExtAdvHelper<<C as DynCastConfig>::Source, <C as DynCastConfig>::Target>, Use this to cast from one trait object type to another. With this method the type parameter is a config type that uniquely specifies which cast should be preformed. Read more
fn instrument(self, span: Span) -> Instrumented<Self>ⓘNotable traits for Instrumented<T>
impl<T> Future for Instrumented<T> where
T: Future, type Output = <T as Future>::Output;
fn instrument(self, span: Span) -> Instrumented<Self>ⓘNotable traits for Instrumented<T>
impl<T> Future for Instrumented<T> where
T: Future, type Output = <T as Future>::Output;Instruments this type with the provided Span, returning an
Instrumented wrapper. Read more
fn in_current_span(self) -> Instrumented<Self>ⓘNotable traits for Instrumented<T>
impl<T> Future for Instrumented<T> where
T: Future, type Output = <T as Future>::Output;
fn in_current_span(self) -> Instrumented<Self>ⓘNotable traits for Instrumented<T>
impl<T> Future for Instrumented<T> where
T: Future, type Output = <T as Future>::Output;pub fn vzip(self) -> V