1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
use super::template_loader::TestTemplate;
use super::{Constraint, ParamType, ParamValue};
use crate::testers::SupportedTester;
use crate::Result;
use indexmap::IndexMap;
use std::str::FromStr;

/// This is an abstract data object which is used to model test instances on Teradyne platforms
/// and both test methods and test suites on Advantest platforms.
/// A test template is modelled as a Test where indirect = true, which means that it will never be
/// rendered directly to a test program output file, however it can be referenced as a parent by
/// direct tests which are to be rendered.
/// Child tests can add additional prameters/aliases/defaults and/or inherit or override those from
/// parent tests.
#[derive(Debug, Clone, Serialize)]
pub struct Test {
    pub id: usize,
    pub name: String,
    pub indirect: bool,
    /// Defines the names of parameters and their types. Child class can override the type of a parameter
    /// inherited from a parent by adding a parameter of the same name to their params map. Then can also
    /// add additional parameters via the same mechanism. It is not possible to delete a parameter inherited
    /// from a parent Test.
    pub params: IndexMap<String, ParamType>,
    pub values: IndexMap<String, ParamValue>,
    pub aliases: IndexMap<String, String>,
    pub constraints: IndexMap<String, Vec<Constraint>>,
    pub tester: SupportedTester,
    pub class_name: Option<String>,
    pub test_id: Option<usize>,
    // Should remain private, this is to ensure there is no direct construction of test objects
    _private: (),
}

pub struct SortedParams<'a> {
    test: &'a Test,
    sorted_keys: Vec<&'a String>,
}

impl<'a> SortedParams<'a> {
    fn new(test: &'a Test) -> SortedParams {
        let mut keys: Vec<&String> = test.params.keys().collect();
        keys.sort();
        keys.reverse();
        SortedParams {
            test: test,
            sorted_keys: keys,
        }
    }
}

impl<'a> Iterator for SortedParams<'a> {
    type Item = (&'a str, &'a ParamType, Option<&'a ParamValue>);

    // Here, we define the sequence using `.curr` and `.next`.
    // The return type is `Option<T>`:
    //     * When the `Iterator` is finished, `None` is returned.
    //     * Otherwise, the next value is wrapped in `Some` and returned.
    fn next(&mut self) -> Option<(&'a str, &'a ParamType, Option<&'a ParamValue>)> {
        if let Some(k) = self.sorted_keys.pop() {
            Some((
                k,
                self.test.params.get(k).unwrap(),
                self.test.get(k).unwrap(),
            ))
        } else {
            None
        }
    }
}

impl Test {
    pub fn new(name: &str, id: usize, tester: SupportedTester) -> Test {
        let mut t = Test {
            id: id,
            name: name.to_string(),
            indirect: false,
            params: IndexMap::new(),
            values: IndexMap::new(),
            aliases: IndexMap::new(),
            constraints: IndexMap::new(),
            tester: tester,
            class_name: None,
            /// If the test is modelling an invocation then this will reflect the ID of the
            /// test being invoked
            test_id: None,
            _private: (),
        };
        let clean_name = clean(name);
        if clean_name != name {
            t.aliases.insert(clean_name, name.to_owned());
        }
        t
    }

    pub fn sorted_params(&self) -> SortedParams {
        SortedParams::new(&self)
    }

    /// Applies the values read from a test template file (e.g. JSON) to the current test object
    pub fn import_test_template(&mut self, test_template: &TestTemplate) -> Result<()> {
        self.class_name = test_template.class_name.to_owned();
        if let Some(params) = &test_template.parameters {
            for (name, param) in params {
                let kind = match &param.kind {
                    Some(k) => match ParamType::from_str(k) {
                        Err(msg) => {
                            return error!(
                                "{} (for parameter '{}' in test template '{}')",
                                msg, name, &self.name
                            )
                        }
                        Ok(t) => t,
                    },
                    None => ParamType::String,
                };
                self.params.insert(name.to_owned(), kind.clone());
                if let Some(aliases) = &param.aliases {
                    for alias in aliases {
                        self.aliases.insert(clean(alias), name.to_owned());
                    }
                }
                if let Some(value) = &param.value {
                    let v = self.import_value(&kind, name, value)?;
                    self.values.insert(name.to_owned(), v);
                }
                if let Some(accepted_values) = &param.accepted_values {
                    let mut values: Vec<ParamValue> = vec![];
                    for value in accepted_values {
                        values.push(self.import_value(&kind, name, value)?);
                    }
                    self.constraints
                        .insert(name.to_owned(), vec![Constraint::In(values)]);
                }
            }
        }
        if let Some(params) = &test_template.parameter_list {
            for (name, type_str) in params {
                match ParamType::from_str(&type_str) {
                    Err(msg) => {
                        return error!(
                            "{} (for parameter '{}' in test template '{}')",
                            msg, name, &self.name
                        )
                    }
                    Ok(t) => {
                        self.params.insert(name.to_string(), t);
                    }
                }
            }
        }
        if let Some(aliases) = &test_template.aliases {
            for (new, old) in aliases {
                if self.params.contains_key(old) {
                    self.aliases.insert(clean(new), old.to_owned());
                } else {
                    return error!("Invalid alias: test template '{}' has no parameter '{}' (being aliased to '{}')", &self.name, old, new);
                }
            }
        }
        if let Some(values) = &test_template.values {
            for (name, value) in values {
                let param_name = { self.to_param_name(name)?.to_owned() };
                let v = self.import_value(self.get_type(&param_name)?, name, value)?;
                self.values.insert(param_name, v);
            }
        }
        if let Some(accepted_values) = &test_template.accepted_values {
            for (name, accepted_values) in accepted_values {
                let param_name = { self.to_param_name(name)?.to_owned() };
                let mut values: Vec<ParamValue> = vec![];
                for value in accepted_values {
                    values.push(self.import_value(self.get_type(&param_name)?, name, value)?);
                }
                self.constraints
                    .insert(param_name, vec![Constraint::In(values)]);
            }
        }
        Ok(())
    }

    fn import_value(
        &self,
        kind: &ParamType,
        name: &str,
        value: &serde_json::Value,
    ) -> Result<ParamValue> {
        match kind {
            &ParamType::String => match value.as_str() {
                Some(x) => Ok(ParamValue::String(x.to_owned())),
                None => error!(
                    "Value given for '{}' in test '{}' is not a string: '{:?}'",
                    name, &self.name, value
                ),
            },
            &ParamType::Int => match value.as_i64() {
                Some(x) => Ok(ParamValue::Int(x)),
                None => error!(
                    "Value given for '{}' in test '{}' is not an integer: '{:?}'",
                    name, &self.name, value
                ),
            },
            &ParamType::UInt => match value.as_u64() {
                Some(x) => Ok(ParamValue::UInt(x)),
                None => error!(
                    "Value given for '{}' in test '{}' is not an unsigned integer: '{:?}'",
                    name, &self.name, value
                ),
            },
            &ParamType::Float => match value.as_f64() {
                Some(x) => Ok(ParamValue::Float(x)),
                None => error!(
                    "Value given for '{}' in test '{}' is not a float: '{:?}'",
                    name, &self.name, value
                ),
            },
            &ParamType::Current => match value.as_f64() {
                Some(x) => Ok(ParamValue::Current(x)),
                None => error!(
                    "Value given for '{}' in test '{}' is not a number: '{:?}'",
                    name, &self.name, value
                ),
            },
            &ParamType::Voltage => match value.as_f64() {
                Some(x) => Ok(ParamValue::Voltage(x)),
                None => error!(
                    "Value given for '{}' in test '{}' is not a number: '{:?}'",
                    name, &self.name, value
                ),
            },
            &ParamType::Time => match value.as_f64() {
                Some(x) => Ok(ParamValue::Time(x)),
                None => error!(
                    "Value given for '{}' in test '{}' is not a number: '{:?}'",
                    name, &self.name, value
                ),
            },
            &ParamType::Frequency => match value.as_f64() {
                Some(x) => Ok(ParamValue::Frequency(x)),
                None => error!(
                    "Value given for '{}' in test '{}' is not a number: '{:?}'",
                    name, &self.name, value
                ),
            },
            &ParamType::Bool => match value.as_bool() {
                Some(x) => Ok(ParamValue::Bool(x)),
                None => error!(
                    "Value given for '{}' in test '{}' is not a boolean: '{:?}'",
                    name, &self.name, value
                ),
            },
            &ParamType::Any => Ok(ParamValue::Any(format!("{}", value))),
        }
    }

    /// Set the value of the given parameter to the given value, returns an error if the
    /// parameter is not found (unless allow_missing = true), if its type does match the type of the
    /// given value or if any constraints placed on the possible values is violated
    pub fn set(
        &mut self,
        param_name_or_alias: &str,
        value: ParamValue,
        allow_mising: bool,
    ) -> Result<()> {
        if allow_mising && !self.has_param(param_name_or_alias) {
            return Ok(());
        }
        let param_name = { self.to_param_name(param_name_or_alias)?.to_owned() };
        let kind = self.get_type(&param_name)?;
        if value.is_type(kind) || kind == &ParamType::Any {
            if let Some(constraints) = self.constraints.get(&param_name) {
                for constraint in constraints {
                    if let Err(e) = constraint.is_satisfied(&value) {
                        return error!(
                            "Illegal value applied to attribute '{}' of test '{}': {}",
                            param_name_or_alias, &self.name, e
                        );
                    }
                }
            }
            self.values.insert(param_name, value);
            Ok(())
        } else {
            error!("The type of the given value for '{}' in test '{}' does not match the required type: expected {:?}, given {:?}", param_name, &self.name, kind, value)
        }
    }

    /// Get the value of the given attribute
    pub fn get(&self, param_name_or_alias: &str) -> Result<Option<&ParamValue>> {
        let param_name = self.to_param_name(param_name_or_alias)?;
        Ok(self.values.get(param_name))
    }

    /// Returns the type of the given parameter name (or alias), returns an error if the
    /// parameter is not found
    pub fn get_type(&self, param_name_or_alias: &str) -> Result<&ParamType> {
        let param_name = self.to_param_name(param_name_or_alias)?;
        Ok(&self.params[param_name])
    }

    pub fn add_param(
        &mut self,
        name: &str,
        kind: ParamType,
        default_value: Option<ParamValue>,
        aliases: Option<Vec<&str>>,
        constraints: Option<Vec<Constraint>>,
    ) -> Result<()> {
        self.params.insert(name.to_string(), kind);
        if let Some(x) = default_value {
            self.values.insert(name.to_string(), x);
        }
        if let Some(aliases) = aliases {
            for alias in aliases {
                self.aliases.insert(clean(name), alias.to_string());
            }
        }
        if let Some(x) = constraints {
            self.constraints.insert(name.to_string(), x);
        }
        Ok(())
    }

    /// Define a simple alias for an existing parameter, returns an error if the
    /// parameter is not found
    pub fn add_alias(&mut self, alias: &str, param_name: &str) -> Result<()> {
        if self.has_param(param_name) {
            self.aliases.insert(clean(alias), param_name.to_string());
            Ok(())
        } else {
            error!(
                "Test '{}' has no parameter named '{}'",
                &self.name, param_name
            )
        }
    }

    /// Returns true if the test has the given parameter name or alias
    pub fn has_param(&self, param_name: &str) -> bool {
        self.params.contains_key(param_name) || {
            let n = clean(param_name);
            self.aliases.contains_key(&n)
        }
    }

    /// Resolves the given param or alias name to a param name
    pub fn to_param_name<'a>(&'a self, name: &'a str) -> Result<&'a str> {
        if self.params.contains_key(name) {
            Ok(name)
        } else {
            let n = clean(name);
            if self.aliases.contains_key(&n) {
                Ok(&self.aliases[&n])
            } else {
                error!(
                    "Test '{}' does not have a parameter named '{}'",
                    self.name, name
                )
            }
        }
    }
}

fn clean(name: &str) -> String {
    name.to_lowercase().replace("_", "")
}