1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
use crate::{
    ConditionDifferentiableDistribution, ContinuousSamplesDistribution, Distribution,
    DistributionError, RandomVariable, ValueDifferentiableDistribution,
};
use opensrdk_kernel_method::*;
use opensrdk_linear_algebra::*;
use rayon::iter::{IntoParallelIterator, ParallelIterator};

/// Adjust samples {b} from posterior p(b|a) with likelihood p(a|b) and prior p(b)
pub struct SteinVariational<'a, L, P, A, B, K>
where
    L: Distribution<Value = A, Condition = B> + ConditionDifferentiableDistribution,
    P: Distribution<Value = B, Condition = ()> + ValueDifferentiableDistribution,
    A: RandomVariable,
    B: RandomVariable,
    K: PositiveDefiniteKernel<Vec<f64>> + ValueDifferentiableKernel<Vec<f64>>,
{
    value: &'a A,
    likelihood: &'a L,
    prior: &'a P,
    kernel: &'a K,
    kernel_params: &'a [f64],
    samples: &'a mut ContinuousSamplesDistribution<Vec<f64>>,
}

impl<'a, L, P, A, B, K> SteinVariational<'a, L, P, A, B, K>
where
    L: Distribution<Value = A, Condition = B> + ConditionDifferentiableDistribution,
    P: Distribution<Value = B, Condition = ()> + ValueDifferentiableDistribution,
    A: RandomVariable,
    B: RandomVariable,
    K: PositiveDefiniteKernel<Vec<f64>> + ValueDifferentiableKernel<Vec<f64>>,
{
    pub fn new(
        value: &'a A,
        likelihood: &'a L,
        prior: &'a P,
        kernel: &'a K,
        kernel_params: &'a [f64],
        samples: &'a mut ContinuousSamplesDistribution<Vec<f64>>,
    ) -> Self {
        Self {
            value,
            likelihood,
            prior,
            kernel,
            kernel_params,
            samples,
        }
    }

    pub fn samples(&mut self) -> &mut ContinuousSamplesDistribution<Vec<f64>> {
        &mut self.samples
    }

    pub fn direction(&self, theta: &B) -> Result<Vec<f64>, DistributionError> {
        let n = self.samples.samples().len();
        let m = self.samples.samples()[0].len();
        let theta_vec = theta.clone().transform_vec().0;
        let phi_sum = self
            .samples
            .samples()
            .iter()
            .map(|theta_j| {
                let kernel = self
                    .kernel
                    .value(self.kernel_params, &theta_vec, &theta_j)
                    .unwrap();
                let kernel_diff = self
                    .kernel
                    .ln_diff_value(self.kernel_params, &theta_vec, &theta_j)
                    .unwrap()
                    .col_mat();
                let p_diff = self
                    .likelihood
                    .ln_diff_condition(self.value, &theta)
                    .unwrap()
                    .col_mat()
                    + self.prior.ln_diff_value(&theta, &()).unwrap().col_mat();
                kernel * p_diff + kernel_diff
            })
            .fold(vec![0.0; m].col_mat(), |sum, x| sum + x);
        let phi = phi_sum
            .vec()
            .iter()
            .map(|i| i / n as f64)
            .collect::<Vec<f64>>();
        Ok(phi)
    }
}

#[cfg(test)]
mod tests {
    use opensrdk_kernel_method::RBF;
    use opensrdk_linear_algebra::{mat, SymmetricPackedMatrix};
    use rand::{prelude::StdRng, Rng, SeedableRng};
    use rand_distr::StandardNormal;

    use crate::{
        ConditionDifferentiableConditionedDistribution, ConditionableDistribution,
        ContinuousSamplesDistribution, DistributionValueProduct, ExactEllipticalParams,
        MultivariateNormal, Normal, NormalParams,
    };

    use super::SteinVariational;
    use opensrdk_kernel_method::*;

    #[test]
    fn it_works() {
        let mut rng = StdRng::from_seed([1; 32]);
        let mut rng2 = StdRng::from_seed([32; 32]);
        let samples_xy = (0..20)
            .into_iter()
            .map(|_| {
                let x = rng2.gen_range(-8.0..=8.0);
                let y = 1.0 + 0.5 * x + rng.sample::<f64, _>(StandardNormal);

                vec![x, y]
            })
            .collect::<Vec<Vec<f64>>>();

        let x = &samples_xy
            .iter()
            .map(|v| vec![1.0, v[0]])
            .collect::<Vec<_>>();
        let y = &samples_xy.iter().map(|v| v[1]).collect::<Vec<_>>();
        let sigma = 0.5;

        let value = y.clone();

        let likelihood = x
            .into_iter()
            .map(|xi| {
                let likelihood_i = Normal.condition(move |theta: &Vec<f64>| {
                    NormalParams::new(theta[0] * xi[0] + theta[1] * xi[1], sigma)
                });
                let condition_diff = move |_theta: &Vec<f64>| {
                    mat!(xi[0],0.0;
                      xi[1], 0.0)
                };
                let likelihood_i_diff = ConditionDifferentiableConditionedDistribution::new(
                    likelihood_i,
                    condition_diff,
                );
                likelihood_i_diff
            })
            .only_value_joint();

        let dim = x[0].len();
        let prior_sigma_sym =
            SymmetricPackedMatrix::from(dim, vec![0.5; dim * (dim + 1) / 2]).unwrap();
        let prior_sigma = prior_sigma_sym.pptrf().unwrap();

        let prior_mu = vec![0.5; dim];
        let prior_params =
            ExactEllipticalParams::new(prior_mu.clone(), prior_sigma.clone()).unwrap();
        let prior = MultivariateNormal::new().condition(|_| Ok(prior_params.clone()));

        let kernel = RBF;
        let kernel_params = [0.5, 0.5];
        let samples_orig = (0..10)
            .into_iter()
            .map(|v| {
                let mut rng3 = StdRng::from_seed([v; 32]);
                let theta_0 = rng3.gen_range(-5.0..=5.0);
                let mut rng4 = StdRng::from_seed([v * 2; 32]);
                let theta_1 = rng4.gen_range(-5.0..=5.0);
                vec![theta_0, theta_1]
            })
            .collect::<Vec<Vec<f64>>>();
        let samples = &mut ContinuousSamplesDistribution::new(samples_orig);

        let theta = vec![0.1, 0.1];

        let stein_test = SteinVariational::new(
            &value,
            &likelihood,
            &prior,
            &kernel,
            &kernel_params,
            samples,
        );

        let stein_ref = &stein_test;
        let phi = stein_ref.direction(&theta).unwrap();

        println!("{:?}", phi)
    }
}