1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
use crate::{
    ConditionDifferentiableDistribution, DependentJoint, Distribution, ExactEllipticalParams,
    IndependentJoint, RandomVariable, SampleableDistribution, ValueDifferentiableDistribution,
};
use crate::{DistributionError, EllipticalParams};
use opensrdk_linear_algebra::Vector;
use rand::prelude::*;
use rand_distr::StandardNormal;
use std::marker::PhantomData;
use std::{ops::BitAnd, ops::Mul};

/// Multivariate normal distribution
#[derive(Clone, Debug)]
pub struct MultivariateNormal<T = ExactEllipticalParams>
where
    T: EllipticalParams,
{
    phantom: PhantomData<T>,
}

impl<T> MultivariateNormal<T>
where
    T: EllipticalParams,
{
    pub fn new() -> Self {
        Self {
            phantom: PhantomData,
        }
    }
}

#[derive(thiserror::Error, Debug)]
pub enum MultivariateNormalError {}

impl<T> Distribution for MultivariateNormal<T>
where
    T: EllipticalParams,
{
    type Value = Vec<f64>;
    type Condition = T;

    fn p_kernel(&self, x: &Self::Value, theta: &Self::Condition) -> Result<f64, DistributionError> {
        let x_mu = theta.x_mu(x)?.col_mat();
        let n = x.len();

        // For preventing the result from being zero, dividing e^n
        Ok((-1.0 / 2.0 * (x_mu.t() * theta.sigma_inv_mul(x_mu)?)[(0, 0)] / (n as f64).exp()).exp())
    }
}

impl<T, Rhs, TRhs> Mul<Rhs> for MultivariateNormal<T>
where
    T: EllipticalParams,
    Rhs: Distribution<Value = TRhs, Condition = T>,
    TRhs: RandomVariable,
{
    type Output = IndependentJoint<Self, Rhs, Vec<f64>, TRhs, T>;

    fn mul(self, rhs: Rhs) -> Self::Output {
        IndependentJoint::new(self, rhs)
    }
}

impl<T, Rhs, URhs> BitAnd<Rhs> for MultivariateNormal<T>
where
    T: EllipticalParams,
    Rhs: Distribution<Value = T, Condition = URhs>,
    URhs: RandomVariable,
{
    type Output = DependentJoint<Self, Rhs, Vec<f64>, T, URhs>;

    fn bitand(self, rhs: Rhs) -> Self::Output {
        DependentJoint::new(self, rhs)
    }
}

impl SampleableDistribution for MultivariateNormal {
    fn sample(
        &self,
        theta: &Self::Condition,
        rng: &mut dyn RngCore,
    ) -> Result<Self::Value, DistributionError> {
        let z = (0..theta.lsigma_cols())
            .into_iter()
            .map(|_| rng.sample(StandardNormal))
            .collect::<Vec<f64>>();

        Ok(theta.sample(z)?)
    }
}

impl ValueDifferentiableDistribution for MultivariateNormal {
    fn ln_diff_value(
        &self,
        x: &Self::Value,
        theta: &Self::Condition,
    ) -> Result<Vec<f64>, DistributionError> {
        let sigma_inv = theta.lsigma().clone().pptri()?.to_mat();
        let mu_mat = theta.x_mu(x)?.row_mat();
        let x_mat = x.clone().row_mat();
        let x_mu_mat = x_mat - mu_mat;
        let f_x = &-x_mu_mat * &sigma_inv;
        Ok(f_x.vec())
    }
}

impl ConditionDifferentiableDistribution for MultivariateNormal {
    fn ln_diff_condition(
        &self,
        x: &Self::Value,
        theta: &Self::Condition,
    ) -> Result<Vec<f64>, DistributionError> {
        let lsigma = theta.lsigma().0.to_mat();
        let _sigma = &lsigma * &lsigma.t();
        let sigma_inv = theta.lsigma().clone().pptri()?.to_mat();
        // let sigma_inv = DiagonalMatrix::new((&lsigma_mat * lsigma_mat.t()).vec())
        //     .powf(-1.0)
        //     .mat();
        let mu_mat = theta.x_mu(x)?.row_mat();
        let x_mat = x.clone().row_mat();
        let x_mu_mat = x_mat - mu_mat;
        let f_mu = &x_mu_mat * &sigma_inv;
        let lsigma_t_inv = theta.lsigma().clone().pptri()?.to_mat().t();
        let x_mu_t = x_mu_mat.t();
        let f_lsigma = (&sigma_inv * &sigma_inv * &x_mu_t * &x_mu_mat - &lsigma_t_inv) * 0.5;
        Ok([f_mu.vec(), f_lsigma.vec()].concat())
    }
}

#[cfg(test)]
mod tests {
    use crate::{
        ConditionDifferentiableDistribution, Distribution, ExactMultivariateNormalParams,
        MultivariateNormal, SampleableDistribution, ValueDifferentiableDistribution,
    };
    use opensrdk_linear_algebra::{pp::trf::PPTRF, *};
    use rand::prelude::*;
    #[test]
    fn it_works() {
        let normal = MultivariateNormal::new();
        let mut rng = StdRng::from_seed([1; 32]);

        let mu = vec![0.0, 1.0, 2.0, 3.0, 4.0, 5.0];
        let lsigma = SymmetricPackedMatrix::from_mat(&mat!(
           1.0,  0.0,  0.0,  0.0,  0.0,  0.0;
           2.0,  3.0,  0.0,  0.0,  0.0,  0.0;
           4.0,  5.0,  6.0,  0.0,  0.0,  0.0;
           7.0,  8.0,  9.0, 10.0,  0.0,  0.0;
          11.0, 12.0, 13.0, 14.0, 15.0,  0.0;
          16.0, 17.0, 18.0, 19.0, 20.0, 21.0
        ))
        .unwrap();
        println!("{:#?}", lsigma);

        let x = normal
            .sample(
                &ExactMultivariateNormalParams::new(mu, PPTRF(lsigma)).unwrap(),
                &mut rng,
            )
            .unwrap();

        println!("{:#?}", x);
    }

    #[test]
    fn it_works2() {
        let normal = MultivariateNormal::new();
        let mut _rng = StdRng::from_seed([1; 32]);

        let mu = vec![0.0, 1.0];
        let lsigma = SymmetricPackedMatrix::from_mat(&mat!(
           1.0,  0.0;
           2.0,  1.0
        ))
        .unwrap();

        let x = vec![0.0, 1.0];

        let f = normal.ln_diff_value(
            &x,
            &ExactMultivariateNormalParams::new(mu, PPTRF(lsigma)).unwrap(),
        );
        println!("{:#?}", f);
    }

    #[test]
    fn it_works_3() {
        let normal = MultivariateNormal::new();
        let mut _rng = StdRng::from_seed([1; 32]);

        let mu = vec![0.0, 1.0];
        let lsigma = SymmetricPackedMatrix::from_mat(&mat!(
           1.0,  0.0;
           2.0,  1.0
        ))
        .unwrap();

        let x = vec![0.0, 1.0];

        let f = normal.ln_diff_condition(
            &x,
            &ExactMultivariateNormalParams::new(mu, PPTRF(lsigma)).unwrap(),
        );
        println!("{:#?}", f);
    }
}