1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
/*
Copyright 2017 Takashi Ogura

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
#![allow(clippy::trivially_copy_pass_by_ref)]

use k::{nalgebra as na, InverseKinematicsSolver, SubsetOf};
use na::RealField;
use parking_lot::Mutex;
use rayon::iter::{IntoParallelRefIterator, ParallelIterator};

use crate::funcs::*;

/// Randomize initial joint angles before solving
#[derive(Debug)]
pub struct RandomInitializeIkSolver<T, I>
where
    I: InverseKinematicsSolver<T>,
    T: RealField,
{
    /// The IK solver to be used after set random joint angles
    pub solver: I,
    /// The number to try to solve
    pub num_max_try: usize,
    phantom: ::std::marker::PhantomData<T>,
}

impl<T, I> RandomInitializeIkSolver<T, I>
where
    T: RealField,
    I: InverseKinematicsSolver<T>,
{
    pub fn new(solver: I, num_max_try: usize) -> Self {
        RandomInitializeIkSolver {
            solver,
            num_max_try,
            phantom: ::std::marker::PhantomData,
        }
    }
}

impl<T, I> InverseKinematicsSolver<T> for RandomInitializeIkSolver<T, I>
where
    T: RealField + Copy + SubsetOf<f64>,
    I: InverseKinematicsSolver<T>,
{
    fn solve_with_constraints(
        &self,
        arm: &k::SerialChain<T>,
        target_pose: &na::Isometry3<T>,
        constraints: &k::Constraints,
    ) -> ::std::result::Result<(), k::Error> {
        let mut result = Err(k::Error::NotConvergedError {
            num_tried: 0,
            position_diff: na::Vector3::new(0.0, 0.0, 0.0),
            rotation_diff: na::Vector3::new(0.0, 0.0, 0.0),
        });
        let limits = arm.iter_joints().map(|j| j.limits).collect();
        let initial_angles = arm.joint_positions();

        for _ in 0..self.num_max_try {
            result = self
                .solver
                .solve_with_constraints(arm, target_pose, constraints);
            if result.is_ok() {
                return result;
            }
            let mut new_angles = generate_random_joint_positions_from_limits(&limits);
            modify_to_nearest_angle(&initial_angles, &mut new_angles, &limits);
            arm.set_joint_positions(&new_angles)?;
        }
        // failed
        arm.set_joint_positions(&initial_angles)?;
        result
    }
}

/// Check the poses which can be reached by the robot arm
pub fn get_reachable_region<T, I>(
    ik_solver: &I,
    arm: &k::SerialChain<T>,
    initial_pose: &na::Isometry3<T>,
    constraints: &k::Constraints,
    max_point: na::Vector3<T>,
    min_point: na::Vector3<T>,
    unit_check_length: T,
) -> Vec<na::Isometry3<T>>
where
    T: RealField + Copy + k::SubsetOf<f64> + Send + Sync,
    I: InverseKinematicsSolver<T> + Send + Sync,
{
    let initial_angles = arm.joint_positions();
    let solved_poses = Mutex::new(Vec::new());
    let target_pose = *initial_pose;

    let mut z_points = vec![];
    let mut z = min_point[2];
    while z < max_point[2] {
        z_points.push(z);
        z += unit_check_length;
    }

    z_points.par_iter().for_each(|&z| {
        let arm = arm.clone();
        let mut target_pose = target_pose;
        target_pose.translation.vector[2] = z;
        let mut y = min_point[1];
        while y < max_point[1] {
            target_pose.translation.vector[1] = y;
            let mut x = min_point[0];
            while x < max_point[0] {
                target_pose.translation.vector[0] = x;
                arm.set_joint_positions_unchecked(&initial_angles);
                if ik_solver
                    .solve_with_constraints(&arm, &target_pose, constraints)
                    .is_ok()
                {
                    solved_poses.lock().push(target_pose);
                }
                x += unit_check_length;
            }
            y += unit_check_length;
        }
    });
    solved_poses.into_inner()
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn get_region() {
        let robot = k::Chain::<f32>::from_urdf_file("sample.urdf").unwrap();
        let target_link = robot.find("l_tool_fixed").unwrap();
        let chain = k::SerialChain::from_end(target_link);

        // Set initial joint angles
        let angles = vec![0.2, 0.2, 0.0, -1.0, 0.0, 0.0];

        chain.set_joint_positions(&angles).unwrap();
        println!("initial angles={:?}", chain.joint_positions());

        // Get the transform of the end of the manipulator (forward kinematics)
        chain.update_transforms();
        let target = target_link.world_transform().unwrap();
        println!("{:?}", target.translation);
        // Create IK solver with default settings
        let solver = k::JacobianIkSolver::default();

        // Create a set of joints from end joint
        let arm = k::SerialChain::from_end(target_link);
        let regions = get_reachable_region(
            &solver,
            &arm,
            &target,
            &k::Constraints::default(),
            na::Vector3::new(0.8, 0.9, 0.9),
            na::Vector3::new(0.0, -0.9, 0.0),
            0.1,
        );
        assert_eq!(regions.len(), 114);
    }
}