1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
use std::convert::TryFrom;

use num::{NumCast, One, Zero};
#[cfg(feature = "use-mpfr")]
use rug::Float;

use crate::error::Fallible;

// general overview of casters:
// https://docs.google.com/spreadsheets/d/1DJohiOI3EVHjwj8g4IEdFZVf7MMyFk_4oaSyjTfkO_0/edit?usp=sharing

/// Fallible casting where the casted value is exactly equal to the original value.
pub trait ExactIntCast<TI>: Sized + ExactIntBounds {
    /// # Proof Definition
    /// For any `v` of type `TI`, `Self::exact_int_cast(value)` either
    /// returns `Err(e)` if `v` is smaller than `Self::MIN_CONSECUTIVE` or greater than `Self::MAX_CONSECUTIVE`,
    /// or `Ok(out)` where $out = v$.
    fn exact_int_cast(v: TI) -> Fallible<Self>;
}

/// Consts representing the maximum and minimum finite consecutive values.
///
/// This is also implemented for floats,
/// as neighboring floating point values may differ by more than 1 when the mantissa is exhausted.
pub trait ExactIntBounds {
    /// # Proof Definition
    /// `Self::MAX_CONSECUTIVE` is the largest integer-consecutive finite value that can be represented by `Self`.
    const MAX_CONSECUTIVE: Self;
    /// # Proof Definition
    /// `Self::MIN_CONSECUTIVE` is the smallest integer-consecutive finite value that can be represented by `Self`.
    const MIN_CONSECUTIVE: Self;
}

/// Fallible casting where the casted value rounds towards infinity.
///
/// This preserves the invariant that the casted value is gte the original value.
/// For example, casting a 128_u8 to i8 doesn't saturate to i8::MAX (127), it errors.
pub trait InfCast<TI>: Sized {
    /// # Proof Definition
    /// For any `v` of type `TI`, `Self::inf_cast(value)` either returns `Err(e)`,
    /// or `Ok(out)` where $out \ge v$.
    fn inf_cast(v: TI) -> Fallible<Self>;
    /// # Proof Definition
    /// For any `v` of type `TI`, `Self::inf_cast(value)` either returns `Err(e)`,
    /// or `Ok(out)` where $out \le v$.
    fn neg_inf_cast(v: TI) -> Fallible<Self>;
}

/// Fallible casting where the casted value is rounded to nearest.
pub trait RoundCast<TI>: Sized {
    /// # Proof Definition
    /// For any `v` of type `TI`, `Self::inf_cast(v)` either returns `Err(e)`,
    /// or `Ok(out)` where $out = argmin_{x \in TI} |x - v|$.
    fn round_cast(v: TI) -> Fallible<Self>;
}

macro_rules! cartesian {
    // base case
    (@[$(($a1:tt, $a2:tt))*] [] $b:tt $init_b:tt $submacro:tt) =>
        ($($submacro!{$a1, $a2})*);
    // when b empty, strip off an "a" and refill b from init_b
    (@$out:tt [$a:tt, $($at:tt)*] [] $init_b:tt $submacro:tt) =>
        (cartesian!{@$out [$($at)*] $init_b $init_b $submacro});
    // strip off a "b" and add a pair to $out that consists of the first "a" and first "b"
    (@[$($out:tt)*] [$a:tt, $($at:tt)*] [$b:tt, $($bt:tt)*] $init_b:tt $submacro:tt) =>
        (cartesian!{@[$($out)* ($a, $b)] [$a, $($at)*] [$($bt)*] $init_b $submacro});

    // recurse down diagonal
    (@diag[$($start_a:tt),*], [$mid_a:tt, $($end_a:tt),*], [$($start_b:tt),*], [$mid_b:tt, $($end_b:tt),*], $lower:tt, $diag:tt, $upper:tt) => {
        $($lower!($mid_a, $start_b);)*
        $diag!($mid_a, $mid_b);
        $($upper!($mid_a, $end_b);)*
        cartesian!{@diag[$($start_a,)* $mid_a], [$($end_a),*], [$($start_b,)* $mid_b], [$($end_b),*], $lower, $diag, $upper}
    };
    // base case, last element on the diagonal
    (@diag[$($start_a:tt),*], [$last_a:tt], [$($start_b:tt),*], [$last_b:tt], $lower:tt, $diag:tt, $upper:tt) => {
        $($lower!($last_a, $start_b);)*
        $diag!($last_a, $last_b);
    };

    // friendly public interface
    // execute submacro on each member of the cartesian product of a and b
    ([$($a:tt)*], [$($b:tt)*], $submacro:tt) =>
        (cartesian!{@[] [$($a)*,] [$($b)*,] [$($b)*,] $submacro});
    ([$($a:tt)*], $submacro:tt) =>
        (cartesian!{@[] [$($a)*,] [$($a)*,] [$($a)*,] $submacro});
    // execute lower, diag and upper on the respective regions of the cartesian product of a and b
    ([$($a:tt)*], [$($b:tt)*], $lower:tt, $diag:tt, $upper:tt) =>
        (cartesian!{@diag[], [$($a)*], [], [$($b)*], $lower, $diag, $upper});
    ([$($a:tt)*], $lower:tt, $diag:tt, $upper:tt) =>
        (cartesian!{@diag[], [$($a)*], [], [$($a)*], $lower, $diag, $upper});
}
pub(crate) use cartesian;

// TRAIT ExactIntCast
macro_rules! impl_exact_int_cast_from {
    ($ti:ty, $to:ty) => {
        impl ExactIntCast<$ti> for $to {
            #[inline]
            fn exact_int_cast(v: $ti) -> Fallible<Self> {
                Ok(From::from(v))
            }
        }
    };
}
macro_rules! impl_exact_int_cast_try_from {
    ($ti:ty, $to:ty) => {
        impl ExactIntCast<$ti> for $to {
            fn exact_int_cast(v: $ti) -> Fallible<Self> {
                TryFrom::try_from(v).map_err(|e| err!(FailedCast, "{:?}", e))
            }
        }
    };
}
// top left
cartesian! {[u8, u16, u32, u64, u128], impl_exact_int_cast_try_from, impl_exact_int_cast_from, impl_exact_int_cast_from}
// top right
cartesian!(
    [u8, u16, u32, u64, u128],
    [i8, i16, i32, i64, i128],
    impl_exact_int_cast_try_from,
    impl_exact_int_cast_try_from,
    impl_exact_int_cast_from
);
// bottom left
cartesian!(
    [i8, i16, i32, i64, i128],
    [u8, u16, u32, u64, u128],
    impl_exact_int_cast_try_from
);
// bottom right
cartesian! {[i8, i16, i32, i64, i128], impl_exact_int_cast_try_from, impl_exact_int_cast_from, impl_exact_int_cast_from}

macro_rules! impl_exact_int_cast_int_float {
    ($int:ty, $float:ty) => (impl ExactIntCast<$int> for $float {
        fn exact_int_cast(v_int: $int) -> Fallible<Self> {
            let v_float = v_int as $float;
            if !(<$float>::MIN_CONSECUTIVE..<$float>::MAX_CONSECUTIVE).contains(&v_float) {
                fallible!(FailedCast, "exact_int_cast: integer is outside of consecutive integer bounds and may be subject to rounding")
            } else {
                Ok(v_float)
            }
        }
    })
}

cartesian!([u8, u16, i8, i16], [f32, f64], impl_exact_int_cast_from);
cartesian!(
    [u64, u128, i64, i128, usize, isize],
    [f32, f64],
    impl_exact_int_cast_int_float
);
impl_exact_int_cast_int_float!(u32, f32);
impl_exact_int_cast_from!(u32, f64);
impl_exact_int_cast_int_float!(i32, f32);
impl_exact_int_cast_from!(i32, f64);

// usize conversions
cartesian!(
    [usize, isize],
    [u8, u16, u32, u64, u128, i8, i16, i32, i64, i128],
    impl_exact_int_cast_try_from
);
cartesian!(
    [u8, u16, u32, u64, u128, i8, i16, i32, i64, i128],
    [usize, isize],
    impl_exact_int_cast_try_from
);
impl_exact_int_cast_from!(usize, usize);
impl_exact_int_cast_from!(isize, isize);
impl_exact_int_cast_try_from!(usize, isize);
impl_exact_int_cast_try_from!(isize, usize);

// TRAIT InfCast
macro_rules! impl_inf_cast_exact {
    ($ti:ty, $to:ty) => {
        impl InfCast<$ti> for $to {
            fn inf_cast(v: $ti) -> Fallible<Self> {
                ExactIntCast::exact_int_cast(v)
            }
            fn neg_inf_cast(v: $ti) -> Fallible<Self> {
                ExactIntCast::exact_int_cast(v)
            }
        }
    };
}
cartesian!(
    [u8, u16, u32, u64, u128, usize, i8, i16, i32, i64, i128, isize],
    impl_inf_cast_exact
);

macro_rules! impl_inf_cast_from {
    ($ti:ty, $to:ty) => {
        impl InfCast<$ti> for $to {
            #[inline]
            fn inf_cast(v: $ti) -> Fallible<Self> {
                Ok(From::from(v))
            }
            fn neg_inf_cast(v: $ti) -> Fallible<Self> {
                Ok(From::from(v))
            }
        }
    };
}

macro_rules! impl_exact_int_bounds {
    ($($ty:ty),*) => ($(impl ExactIntBounds for $ty {
        const MAX_CONSECUTIVE: Self = Self::MAX;
        const MIN_CONSECUTIVE: Self = Self::MIN;
    })*)
}
impl_exact_int_bounds!(u8, u16, u32, u64, u128, usize, i8, i16, i32, i64, i128, isize);
impl ExactIntBounds for f64 {
    const MAX_CONSECUTIVE: Self = 9_007_199_254_740_992.0;
    const MIN_CONSECUTIVE: Self = -9_007_199_254_740_992.0;
}

impl ExactIntBounds for f32 {
    const MAX_CONSECUTIVE: Self = 16_777_216.0;
    const MIN_CONSECUTIVE: Self = -16_777_216.0;
}

macro_rules! impl_inf_cast_int_float {
    ($int:ty, $float:ty) => {
        #[cfg(feature = "use-mpfr")]
        impl InfCast<$int> for $float {
            fn inf_cast(v_int: $int) -> Fallible<Self> {
                use rug::{float::Round, Float};
                let float = Float::with_val_round(Self::MANTISSA_DIGITS, v_int, Round::Up).0;
                Self::inf_cast(float)
            }
            fn neg_inf_cast(v_int: $int) -> Fallible<Self> {
                use rug::{float::Round, Float};
                let float = Float::with_val_round(Self::MANTISSA_DIGITS, v_int, Round::Down).0;
                Self::neg_inf_cast(float)
            }
        }
        // cast from int to float with controlled rounding, or fail
        #[cfg(not(feature = "use-mpfr"))]
        impl InfCast<$int> for $float {
            fn inf_cast(v_int: $int) -> Fallible<Self> {
                // defer to exact int cast implementation
                Self::exact_int_cast(v_int)
            }
            fn neg_inf_cast(v_int: $int) -> Fallible<Self> {
                Self::exact_int_cast(v_int)
            }
        }
    };
}

cartesian!([u8, u16, i8, i16], [f32, f64], impl_inf_cast_from);
cartesian!(
    [u64, u128, i64, i128, usize],
    [f32, f64],
    impl_inf_cast_int_float
);
impl_inf_cast_int_float!(u32, f32);
impl_inf_cast_from!(u32, f64);
impl_inf_cast_int_float!(i32, f32);
impl_inf_cast_from!(i32, f64);

impl_inf_cast_from!(f32, f32);
impl_inf_cast_from!(f32, f64);

impl InfCast<f64> for f32 {
    fn inf_cast(vf64: f64) -> Fallible<Self> {
        if vf64.is_nan() {
            return Ok(f32::NAN);
        }
        // cast with rounding towards nearest, ties toward even
        // https://doc.rust-lang.org/reference/expressions/operator-expr.html#semantics
        let vf32 = vf64 as f32;

        // if nearest was toward -inf, then perturb one step towards inf
        // +/- zero always evaluates to false
        if vf64 > vf32 as f64 {
            return Ok(f32::from_bits(if vf32.is_sign_negative() {
                vf32.to_bits() - 1
            } else {
                vf32.to_bits() + 1
            }));
        }
        Ok(vf32)
    }

    fn neg_inf_cast(vf64: f64) -> Fallible<Self> {
        if vf64.is_nan() {
            return Ok(f32::NAN);
        }
        // cast with rounding towards nearest, ties toward even
        // https://doc.rust-lang.org/reference/expressions/operator-expr.html#semantics
        let vf32 = vf64 as f32;

        // if nearest was toward inf, then perturb one step towards -inf
        // +/- zero always evaluates to false
        if vf64 < vf32 as f64 {
            return Ok(f32::from_bits(if vf32.is_sign_negative() {
                vf32.to_bits() + 1
            } else {
                vf32.to_bits() - 1
            }));
        }
        Ok(vf32)
    }
}
impl_inf_cast_from!(f64, f64);

macro_rules! impl_inf_cast_float_int {
    ($ti:ty, $to:ty) => (impl InfCast<$ti> for $to {
        fn inf_cast(mut v: $ti) -> Fallible<Self> {
            v = v.ceil();
            if Self::MIN as $ti > v || Self::MAX as $ti < v {
                fallible!(FailedCast, "Failed to cast float to int. Float value is outside of range.")
            } else {
                Ok(v as Self)
            }
        }

        fn neg_inf_cast(mut v: $ti) -> Fallible<Self> {
            v = v.floor();
            if Self::MIN as $ti > v || Self::MAX as $ti < v {
                fallible!(FailedCast, "Failed to cast float to int. Float value is outside of range.")
            } else {
                Ok(v as Self)
            }
        }
    })
}
cartesian!(
    [f32, f64],
    [u8, u16, u32, u64, u128, i8, i16, i32, i64, i128],
    impl_inf_cast_float_int
);

#[cfg(test)]
mod test_inf_cast {
    use crate::traits::InfCast;

    #[allow(dead_code)]
    enum Diff {
        Equal,
        Prev,
        Next,
        Less,
        Greater,
    }

    fn check_rounded_cast(input: f64, diff: Diff) {
        let casted = f32::inf_cast(input).unwrap() as f64;
        if input.is_nan() {
            assert!(casted.is_nan());
            return;
        }

        let error = match diff {
            Diff::Equal => (casted != input).then(|| "casted value must be equal to input"),
            Diff::Greater => {
                (casted <= input).then(|| "casted value must be greater than input value")
            }
            Diff::Less => (casted >= input).then(|| "casted value must be less than input value"),
            Diff::Next => (f64::from_bits(input.to_bits() + 1) != casted)
                .then(|| "casted must be one step greater than input"),
            Diff::Prev => (f64::from_bits(input.to_bits() - 1) != casted)
                .then(|| "casted must be one step less than input"),
        };
        if let Some(message) = error {
            println!("bits      {:064b}", input.to_bits());
            println!("input     {}", input);
            println!("output    {}", casted);
            panic!("{}", message)
        }
    }

    #[test]
    // ignored test because it can take a while to run
    #[ignore]
    fn test_f64_f32() {
        check_rounded_cast(0., Diff::Equal);
        // check that the f64 one step above zero casts to a value that is greater
        check_rounded_cast(f64::MIN_POSITIVE, Diff::Greater);
        // check that the f64 one step below 2 casts to exactly 2
        check_rounded_cast(1.9999999999999998, Diff::Next);
        // for each non-negative, nonzero f32
        for u32_bits in 1..u32::MAX / 2 {
            let f64_value = f32::from_bits(u32_bits) as f64;
            let u64_bits = f64_value.to_bits();

            if u32_bits % 100_000_000 == 0 {
                println!("checkpoint every 300 million tests: {}", f64_value);
            }
            // check that the f64 equivalent to the current f32 casts to a value that is equivalent
            check_rounded_cast(f64_value, Diff::Equal);
            // check that the f64 one step below the f64 equivalent to the current f32 casts to a value that is one step greater
            check_rounded_cast(f64::from_bits(u64_bits - 1), Diff::Next);
            // check that the f64 one step above the f64 equivalent to the current f32 casts to a value that is greater
            check_rounded_cast(f64::from_bits(u64_bits + 1), Diff::Greater);
        }
    }
}

// TRAIT RoundCast
macro_rules! impl_round_cast_num {
    ($TI:ty, $TO:ty) => {
        impl RoundCast<$TI> for $TO {
            fn round_cast(v: $TI) -> Fallible<Self> {
                <$TO as NumCast>::from(v).ok_or_else(|| err!(FailedCast))
            }
        }
    };
}

macro_rules! impl_round_cast_self_string_bool {
    ($T:ty, $_T:ty) => {
        impl RoundCast<$T> for $T {
            fn round_cast(v: $T) -> Fallible<Self> {
                Ok(v)
            }
        }
        impl RoundCast<bool> for $T {
            fn round_cast(v: bool) -> Fallible<Self> {
                Ok(if v { Self::one() } else { Self::zero() })
            }
        }
        impl RoundCast<$T> for bool {
            fn round_cast(v: $T) -> Fallible<Self> {
                Ok(!v.is_zero())
            }
        }
        impl RoundCast<String> for $T {
            fn round_cast(v: String) -> Fallible<Self> {
                v.parse::<$T>().map_err(|_e| err!(FailedCast))
            }
        }
        impl RoundCast<$T> for String {
            fn round_cast(v: $T) -> Fallible<Self> {
                Ok(v.to_string())
            }
        }
    };
}
cartesian! {[u8, u16, u32, u64, u128, usize, i8, i16, i32, i64, i128, isize, f32, f64], impl_round_cast_num, impl_round_cast_self_string_bool, impl_round_cast_num}

// final four casts among bool and string
impl RoundCast<bool> for bool {
    fn round_cast(v: bool) -> Fallible<Self> {
        Ok(v)
    }
}

impl RoundCast<String> for String {
    fn round_cast(v: String) -> Fallible<Self> {
        Ok(v)
    }
}

impl RoundCast<String> for bool {
    fn round_cast(v: String) -> Fallible<Self> {
        Ok(!v.is_empty())
    }
}

impl RoundCast<bool> for String {
    fn round_cast(v: bool) -> Fallible<Self> {
        Ok(v.to_string())
    }
}

#[cfg(feature = "use-mpfr")]
impl InfCast<f32> for Float {
    fn inf_cast(v: f32) -> Fallible<Self> {
        Ok(Float::with_val_round(f32::MANTISSA_DIGITS, v, rug::float::Round::Up).0)
    }

    fn neg_inf_cast(v: f32) -> Fallible<Self> {
        Ok(Float::with_val_round(f32::MANTISSA_DIGITS, v, rug::float::Round::Down).0)
    }
}

#[cfg(feature = "use-mpfr")]
impl InfCast<f64> for Float {
    fn inf_cast(v: f64) -> Fallible<Self> {
        Ok(Float::with_val_round(f64::MANTISSA_DIGITS, v, rug::float::Round::Up).0)
    }

    fn neg_inf_cast(v: f64) -> Fallible<Self> {
        Ok(Float::with_val_round(f64::MANTISSA_DIGITS, v, rug::float::Round::Down).0)
    }
}

#[cfg(feature = "use-mpfr")]
impl InfCast<Float> for f32 {
    fn inf_cast(v: Float) -> Fallible<Self> {
        Ok(v.to_f32_round(rug::float::Round::Up))
    }

    fn neg_inf_cast(v: Float) -> Fallible<Self> {
        Ok(v.to_f32_round(rug::float::Round::Down))
    }
}

#[cfg(feature = "use-mpfr")]
impl InfCast<Float> for f64 {
    fn inf_cast(v: Float) -> Fallible<Self> {
        Ok(v.to_f64_round(rug::float::Round::Up))
    }

    fn neg_inf_cast(v: Float) -> Fallible<Self> {
        Ok(v.to_f64_round(rug::float::Round::Down))
    }
}